

Dear Reader,

If you think developing a Design Studio application is a challenge, you should try
writing a book about developing a Design Studio application. From building the
structure, to choosing the components, to making sure all the pieces and parts
work together the way they should—a lot goes into both. However, if you’re up to
the task, you’re left with something that people are going to use again and again.

Dear reader, I’m happy to tell you: Xavier Hacking and Jeroen van der A were up to
the task. And after months of arduous writing, weeks of detailed editing, and days
of follow-up questions from their [okay, I admit it, kind of picky] editor—their work
is ready for user testing. Give it a whirl. I think you’ll find that these pages have
exactly the information you were looking for.

Of course, we at SAP PRESS would be interested to hear whether this book passed
your test. What did you think about Getting Started with SAP BusinessObjects
Design Studio? How could it be improved? As your comments and suggestions are
the most useful tools to help us make our books the best they can be, we encour-
age you to visit our website at www.sap-press.com and share your feedback.

Thank you for purchasing a book from SAP PRESS!	

Kelly Grace Weaver
Editor, SAP PRESS

Galileo Press
Boston, MA

kelly.weaver@galileo-press.com

http://www.sap-press.com

Imprint

This e-book is a publication many contributed to, specifically:

Editor Kelly Grace Weaver
Copyeditor Ruth Saavedra
Cover Design Graham Geary
Photo Credit iStockphoto.com/11682470/© pengpeng
Production E-Book Graham Geary
Typesetting E-Book SatzPro, Krefeld (Germany)

We hope that you liked this e-book. Please share your feedback with us and read
the Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:
Hacking, Xavier.

Getting started with SAP BusinessObjects design studio / Xavier Hacking and Jeroen van der A.

-- 1st edition.

pages cm

ISBN-13: 978-1-59229-895-2 (print)

ISBN-10: 1-59229-895-8 (print)

ISBN-13: 978-1-59229-896-9 (e-book)

ISBN-13: 978-1-59229-897-6 (print and e-book) 1. BusinessObjects. 2. Business intelligence--

Data processing.

3. Dashboards (Management information systems) 4. SAP ERP. I. Van der A, Jeroen. II. Title.

HD38.7.H33 2013

658.4’038028553--dc23

2013033422

ISBN 978-1-59229-895-2 (print)
ISBN 978-1-59229-896-9 (e-book)
ISBN 978-1-59229-897-6 (print and e-book)

1st edition 2014

7

Contents

Foreword ... 15
Introduction ... 17
Acknowledgments .. 21

1 Introduction to SAP BusinessObjects Design Studio ... 23

1.1 What Is Design Studio? ... 24
1.1.1 Development Environment 26
1.1.2 Components .. 26
1.1.3 Data Sources and Platforms 26
1.1.4 Scripting .. 27
1.1.5 CSS .. 27
1.1.6 Templates and Themes 28
1.1.7 Application Execution .. 29

1.2 Design Studio and Existing SAP BusinessObjects BI
Environments ... 30
1.2.1 SAP BI Tool Categories 32
1.2.2 Content Creation and Consumption 37

1.3 Summary .. 40

2 SAP BusinessObjects Design Studio vs. SAP Business-
Objects Dashboards vs. BEx Web Application Designer 41

2.1 SAP BusinessObjects Dashboards 41
2.1.1 Setting Up a Dashboard 43
2.1.2 Components .. 45
2.1.3 Data Connectivity .. 48
2.1.4 Publishing .. 49
2.1.5 Software Development Kit (SDK) 50

2.2 BEX Web Application Designer 51
2.2.1 Setting Up a Web Application Template 52
2.2.2 Web Items ... 55
2.2.3 Publishing .. 57

2.3 Key Differences .. 58
2.4 Summary .. 61

Contents

8

3 Usage Scenarios ... 63

3.1 Customer Relationship Management 63
3.1.1 Main Screen ... 64
3.1.2 Helping Out New Customers 65
3.1.3 Workout Evaluation ... 67

3.2 Employee Management .. 68
3.2.1 Main Screen ... 69
3.2.2 Analyzing Calls by Volume 69
3.2.3 Analyzing Calls by Subject 71
3.2.4 Planning ... 72
3.2.5 Employee Assessment .. 72

3.3 Field Sales ... 73
3.3.1 Main Screen ... 74
3.3.2 Customer Information .. 75
3.3.3 Neighborhood Information 76

3.4 Financial Reporting ... 77
3.4.1 Main Screen ... 78
3.4.2 Financial Highlights .. 78
3.4.3 Letter to the Shareholders 79

3.5 Sales Analytics .. 81
3.5.1 Main Screen ... 82
3.5.2 Product Segment .. 84
3.5.3 Customer Segment ... 86

3.6 Business Balanced Scorecards .. 86
3.6.1 Main Screen ... 87
3.6.2 KPI: Amount in Stock of Finished Goods 88
3.6.3 KPI: Value of Stock at the Customer 90

3.7 Summary .. 91

4 Installation and Configuration 93

4.1 Architecture, Components, and Prerequisites 93
4.1.1 SAP BusinessObjects BI Platform 96
4.1.2 SAP NetWeaver BW ... 96
4.1.3 SAP NetWeaver Portal 97
4.1.4 Design Studio Client Tool 97
4.1.5 Browsers .. 97

Contents

9

4.2 Preparing for Installation .. 98
4.2.1 Accessing Document Guides 98
4.2.2 Downloading Software Components 99
4.2.3 Helpful SAP Notes ... 101
4.2.4 Extracting Installation Files 102

4.3 Installing the SAP BusinessObjects BI Platform Add-On ... 104
4.4 Configuring the SAP BusinessObjects BI Platform 111

4.4.1 Initializing the Analysis Application Service 112
4.4.2 Setting the Number of Client Sessions 116
4.4.3 Assigning User Authorizations 117
4.4.4 Creating a Mobile Category 120
4.4.5 Creating an SAP NetWeaver BW OLAP

Connection .. 122
4.4.6 Creating an SAP HANA OLAP Connection 125

4.5 Configuring SAP NetWeaver Portal and SAP
NetWeaver BW .. 127

4.6 Installing the Design Studio Client Tool 132
4.7 Logging In .. 135
4.8 Summary .. 137

5 The Integrated Development Environment 139

5.1 Menu ... 140
5.1.1 Application .. 140
5.1.2 Edit .. 151
5.1.3 Layout ... 152
5.1.4 Search .. 153
5.1.5 View .. 155
5.1.6 Tools .. 157
5.1.7 Help ... 165

5.2 Toolbar ... 167
5.3 Layout Editor .. 169

5.3.1 Components View .. 170
5.3.2 Outline View ... 171
5.3.3 Properties View ... 176
5.3.4 Additional Properties View 179
5.3.5 Error Log View ... 180
5.3.6 Script Problems View ... 181

5.4 Summary .. 181

Contents

10

6 The Application Design Process 183

6.1 Setting Up the User Interface and Visualizations 184
6.2 Adding the Data ... 188
6.3 Making It Interactive .. 192
6.4 Formatting and Fine-Tuning .. 197
6.5 Executing the Application ... 201
6.6 Summary .. 202

7 Components and Properties .. 205

7.1 Application Component Properties 205
7.1.1 Custom CSS .. 208
7.1.2 Global Script Variables and On Startup 211

7.2 Data Source Alias Component Properties 213
7.3 Visual Component Properties .. 214

7.3.1 Common Properties ... 214
7.3.2 Analytic Component Properties 216
7.3.3 Basic Component Properties 229
7.3.4 Container Component Properties 243

7.4 Working with Components and Properties 253
7.4.1 Create Application Templates 253
7.4.2 Using Container Components 257
7.4.3 Using a Naming Convention for Your

Components ... 259
7.5 Summary .. 262

8 Scripting for Interactivity ... 263

8.1 BI Action Language ... 263
8.1.1 Syntax .. 264
8.1.2 Expressions .. 267
8.1.3 Script Variables .. 269
8.1.4 Calling the Event Handler 270

8.2 Creating a Script ... 271
8.2.1 Using the Content Assistance Screen 272
8.2.2 Creating Predefined Statement Templates 276
8.2.3 Finding Script Errors ... 280

Contents

11

8.3 Methods ... 281
8.3.1 Convert Component ... 281
8.3.2 Data Source Alias Component 282
8.3.3 Application Component 285
8.3.4 Visual Components .. 286

8.4 Examples: Building Navigation Items 295
8.4.1 Menu Navigation ... 296
8.4.2 Popup Navigation .. 298
8.4.3 Navigating between Applications 301

8.5 Examples: Manipulating Data Output 303
8.5.1 Adding a Filter ... 303
8.5.2 Adding a Cascading Filter and Drilling Down

to a More Detailed Level 305
8.5.3 Moving Dimensions and Measures 307
8.5.4 Changing Data Sources 311

8.6 Example: Building a Scorecard .. 312
8.7 Example: Building a Calculator .. 316

8.7.1 Setting up the Layout ... 317
8.7.2 Adding the Interactivity 318

8.8 Summary .. 325

9 Design Principles and Visualization Options 327

9.1 General Design Principles ... 327
9.1.1 Don’t Make Users Think 327
9.1.2 Don’t Make Users Wait 328
9.1.3 Manage User Focus .. 328
9.1.4 Emphasize the Features 329
9.1.5 Keep It Simple ... 329
9.1.6 Use Conventions .. 330
9.1.7 Get the Most out of the Room on the Screen 330

9.2 Choosing a Visualization Method 332
9.2.1 Single Number ... 332
9.2.2 Line Chart .. 333
9.2.3 Bar Chart ... 334
9.2.4 Column Chart ... 337
9.2.5 Area Chart ... 339
9.2.6 Crosstab ... 340

Contents

12

9.2.7 Bubble Chart .. 341
9.2.8 Waterfall Chart ... 341
9.2.9 Pie Chart .. 343
9.2.10 Radar Chart .. 345
9.2.11 Scatter Chart .. 346
9.2.12 Chart Comparison .. 347

9.3 Summary .. 348

10 Building a DuPont Analysis Application 349

10.1 Application Overview ... 350
10.1.1 Inputting Numbers Manually 351
10.1.2 Inputting Numbers from an OLAP Connection ... 352
10.1.3 Calling Numbers from Outside the Application ... 354
10.1.4 Comparing the Results 354

10.2 Building the Application ... 355
10.2.1 Setting Up the Layout .. 355
10.2.2 Defining Global Variables 366
10.2.3 Setting Up the Data Sources 367
10.2.4 Scripting for the On Startup Handler 368
10.2.5 Writing Data to the Backend System 369
10.2.6 Scripting for Manual Input 372
10.2.7 Scripting for OLAP Input 375
10.2.8 Scripting for Numbers from Outside the

Application .. 377
10.2.9 Scripting for Comparing the Results 379

10.3 Summary .. 379

11 Building a Sales Dashboard Application 381

11.1 Application Overview ... 381
11.2 Building the Application ... 387

11.2.1 Setting Up the Layout .. 387
11.2.2 Setting Up the Filters and Countries 397
11.2.3 Setting the Top 10 Countries 400
11.2.4 Creating a Top N Query 402

11.3 Summary .. 405

Contents

13

12 Outlook for SAP BusinessObjects Design Studio 407

12.1 Software Development Kit (SDK) 409
12.2 Integrated Planning and Planning Application Kit

Support .. 410
12.3 Universes and OData .. 411
12.4 Mobilize, Visualize, and Unify ... 412
12.5 Summary .. 414

Appendices ... 415

A Using CSS .. 417
A.1 The Structure of a CSS File .. 418
A.2 Tips for Building CSS Files ... 419

A.2.1 Give the Classes Appropriate Names 419
A.2.2 Try to Keep the Declarations in One Line 419
A.2.3 Use Shorthand Code .. 419
A.2.4 Know the Browsers .. 420
A.2.5 Group Your Classes .. 420

A.3 Changing the Inner Style of Components with CSS 421
B Tips for Using SAP BusinessObjects Design Studio and

SAP BusinessObjects Analysis, Edition for Microsoft Office 425
B.1 Creating a Design Studio Application 426
B.2 Smart Copying Data Sources ... 428

C SAP BusinessObjects Mobile and SAP BusinessObjects
Design Studio ... 431
C.1 Supported Platforms ... 432
C.2 Connectivity ... 432
C.3 Using Content .. 433

C.3.1 Browsing the Application 433
C.3.2 Running SAP BusinessObjects BI Content 435
C.3.3 Collaboration Features 436

D Comprehensive List of Methods and Parameters 439
D.1 Application Component .. 439
D.2 Button Component ... 440
D.3 Chart Component ... 441
D.4 Checkbox Component .. 442
D.5 Convert Component ... 443
D.6 Crosstab Component .. 443

Contents

14

D.7 Data Source Alias Component ... 444
D.7.1 Data Cell Component ... 449

D.8 Date Field Component .. 449
D.9 Dimension Filter and Filter Panel Components 450
D.10 Image Component .. 450
D.11 Input Field Component ... 451
D.12 Pagebook Component .. 452
D.13 Panel Component ... 452
D.14 Popup Component .. 452
D.15 Selection Components .. 453
D.16 Tabstrip Component ... 454
D.17 Text Component ... 454
D.18 Visual Components: Common Methods 454

E The Authors .. 457

Index .. 459

Service Pages ... I
Legal Notes .. III

15

Foreword

Back in April 2012, SAP released a statement of direction on dashboard-
ing that named SAP BusinessObjects Design Studio as a new technology
solution for providing rich, professionally authored HTML5 applications
and dashboards. The first version of Design Studio was released in
November 2012 and allows users to build interactive analytical applica-
tion and dashboards on top of SAP NetWeaver BW and SAP HANA
sources.

As SAP continues to invest heavily in building out functionality in SAP
BusinessObjects Design Studio, it’s time for developers to add the tool
to their skillset. This book is a step-by-step guide that will accomplish
exactly this goal—it teaches how to build Design Studio applications via
hands-on training. The book is appropriate for a beginner, but also cov-
ers more advanced topics. By reading and following along with the
steps, you’ll finish with an overview of the functionality in Design Stu-
dio, as well as some good tips for making your applications both mobile
and interactive. In addition, the book covers strategic frequently asked
questions (such as the difference between SAP BusinessObjects Design
Studio, SAP BusinessObjects Dashboards, and SAP BEx Web Application
Designer) and also provides use cases for Design Studio.

Moreover, who better to write this book? I was delighted to hear that
Jeroen van der A and Xavier Hacking, who are two of the most passion-
ate and experienced BI consultants I know, were undertaking the task.
Both are active bloggers in the BI community, which is how I first got to
know them. I still remember, in one of my first days in my new role as
director of product marketing in the business intelligence team, being
told that I simply must read the “bible”—which was Xavier Hacking’s
SAP BusinessObjects Dashboards 4.0 Cookbook. From there I discovered
his blog, www.hackingsap.com. In addition to authoring the cookbook,
he is also a writer for SAP BusinessObjects Expert and part of the Dutch BI
Podcast.

Foreword

16

I first got to know Jeroen through Twitter and his regular blogs on
sdn.sap.com and www.interdobs.nl, and I first met him at an SAP Insider
conference, where we had a lively discussion about the future of dash-
boards and applications. He had some great experience with Design Stu-
dio, being one of the first people to come in early on the beta program
and utilize his broad BI experience to pick it up quickly.

So read the book and get started with Design Studio. Don’t forget to uti-
lize SCN (http://scn.sap.com/community/businessobjects-design-studio) as a
resource for any additional questions and to stay abreast of the latest
news. If you have ideas that you’d like to share with us at SAP for future
releases, you can submit them and vote on others ideas here: https://
ideas.sap.com/ct/s.bix?c={6055F3C4-E8DA-454F-9C49-85D5A5070BCE}.
I’d love to hear about the Design Studio applications you create, so don’t
hesitate to reach out to me either via Twitter (@AnitaGibbings) or SCN.

Anita Gibbings
Director Product Marketing, Business Intelligence at SAP, with global
responsibility for SAP BusinessObjects Design Studio

17

Introduction

SAP BusinessObjects Design Studio (hereafter, Design Studio) was
released in November 2012 and has been placed in the SAP business
intelligence product portfolio as a primary tool for creating interactive
analytical applications for the web and mobile devices. Based on strat-
egy and direction statements from SAP, it is clear that Design Studio will
play a central role in the BI portfolio, and we expect that more and more
development will take place using Design Studio in the near future.

Given these circumstances, it is time to learn more about this new tool.

Target Group and Prerequisites

This book is intended for anyone who wants to learn more about Design
Studio. It can be used by developers who are familiar with dashboard or
application development with BEx Web Application Designer or SAP
BusinessObjects Dashboards, but readers who are new to these tools
will also find the book very helpful. No pre-existing knowledge is
required, as the book will explain every aspect of Design Studio in a
step-by-step way, building up from easy-to-understand overview chap-
ters to chapters that are dedicated to creating complex applications.

Structure of the Book

As the goal of this book is to help you get started with Design Studio, we
begin with a broad overview of the tool. In the first chapters, we intro-
duce you to the product, compare it with other SAP products, and show
several use case scenarios.

We follow this by going through every detail of the application. First we
walk you step-by-step through the installation procedure. Then we
describe the application environment and the general process of build-
ing an application. Next we describe every available component and its
properties in detail.

Introduction

18

Once you have mastered the basics, we go into more depth about how
you can enhance an application. We describe how you add interactivity
and give you a set of guidelines for creating applications. We then walk
you through the creation of two complex applications.

� Chapter 1: Introduction to SAP BusinessObjects Design Studio
We start the book with a general introduction to Design Studio. We
give a high-level overview of what the tool is, what the application
developers are able to do and build with the tool, and explain how it
is positioned within the range of tools in the SAP BusinessObjects
Business Intelligence platform.

� Chapter 2: SAP BusinessObjects Design Studio vs. SAP Business-
Objects Dashboards vs. BEx Web Application Designer
This chapter offers a discussion of how Design Studio is different
from SAP BusinessObjects Dashboards and BEx Web Application
Designer.

� Chapter 3: Usage Scenarios
In this chapter, we walk through a variety of examples to show you
how applications developed in Design Studio can be used in different
business scenarios. Each scenario tells a story of an end user who is
using an application designed for his particular role or task. The sce-
narios show that Design Studio is able to deliver process support in
very different situations, varying from real-time operational support
to in-depth strategic analysis.

� Chapter 4: Installation and Configuration
After the broad overview chapters, we focus more on Design Studio
itself. In order to get started with Design Studio, we take you through
the steps to install and set up Design Studio within your SAP BI envi-
ronment. We also give an overview of the Design Studio architecture,
discuss system requirements, and explain how to gather all the instal-
lation material. The chapter ends with your first login with the Design
Studio client tool.

� Chapter 5: The Integrated Development Environment
Once you’ve installed the Design Studio components and opened the
Design Studio client tool for the first time, you will notice a whole lot
of elements. This chapter explains the Design Studio integrated devel-
opment environment, including the menus, toolbar, the Layout Editor,

Introduction

19

and the the several views for its components. After reading this chap-
ter, you will be ready to dive into building applications.

� Chapter 6: The Application Design Process
This chapter introduces you to the general process of building a
Design Studio application. It serves as a tutorial to guide you through
the steps in creating a simple Design Studio application, and serves as
a basis for the more detailed chapters that follow.

� Chapter 7: Components and Properties

In this chapter, we look at all the components and properties of
Design Studio. Components are the building blocks of Design Studio,
and an essential part of developing effective applications.

� Chapter 8: Scripting for Interactivity
In this chapter, we take it to the next level and introduce you to the
scripting language you use to create advanced interactive applications
in Design Studio. We take a close look at the script language, and
show examples of how to use these scripts in your applications.

� Chapter 9: Design Guidelines and Visualization Methods
Before diving into the development of complex applications, we
devote a chapter to the importance of the user experience. In this
chapter, we provide some general principles that will help you build
applications that have a greater chance of actually being used by the
user base. We also describe each Design Studio visualization method,
and give tips for when these methods may or may not be appropriate.

� Chapter 10: Building a DuPont Analysis Application
In this chapter, we use the techniques we showed in the previous
chapters to build a more advanced application with Design Studio: a
DuPont analysis model. A DuPont analysis is an in-depth look at the
return on equity of a company.

� Chapter 11: Building a Sales Dashboard Application
In this chapter, we show a sales dashboard application that reports on
worldwide sales. In this worldwide sales scenario, we track the sales
data of seven global companies and their local markets.

� Chapter 12: Outlook for SAP BusinessObjects Design Studio
In this last chapter of the book, we give you a preview of what you
can expect from the future of Design Studio.

Introduction

20

Once you are through Chapter 12, you will have a firm grasp of what
Design Studio is capable of. You’ll know how to install it, how to use it
to build interactive applications, and you will have gotten some real-
world experience with the tool. Finally, you will also be aware of where
Design Studio is headed in the near future.

Downloads

In addition to the content in the book itself, we also offer some helpful
downloads. You can use these files to review the applications that we
build in the book, or use them to skip parts of the step-by-step tutorials
we provide in the book. In the files, you’ll find both full applications and
CSS files. For the applications, you’ll find:

� Calculator application
This is an application example that we give in Chapter 8. Use this to
try the calculator and understand how it has been built. You do not
need any data source connections.

� DuPont analysis application
This is the application we build in Chapter 10. To be able to use the
general ledger input, you have to define your own data source con-
nections.

� Sales dashboard application
This is the application we build in Chapter 11. Again, keep in mind
that you have to rebuild the data source connections for your own
system.

In addition to the full applications, we also offer bare bone versions of
the above. That way you don’t have to follow the steps to build the lay-
out, but can move forward to the part where the interactivity is added to
the application.

Finally, we also provide CSS files that you can use for the applications.
Downloading these and adding them to the applications will save you
some time, because you won’t have to manually type all the CSS code we
give in the examples.

21

Acknowledgments

Writing this book on SAP BusinessObjects Design Studio has been quite
the journey. As Design Studio is a brand new tool, the past 12 months
have not only been about writing the book, but maybe even more about
figuring out how the tool actually works and what its capabilities are.

First, I want to thank co-author Jeroen van der A for joining me in this
adventure. I still remember how it took Jeroen not even a second before
saying "Yeah, sure," when I asked him about writing this book as a co-
author. Thanks for your unlimited enthusiasm, all those creative ideas,
and your dedication. I also want to thank Kelly Weaver from SAP PRESS
for the great discussions on the content and the very pleasant teamwork
during this project.

Being able to write a book such as this also requires an environment that
offers support and the necessary resources. A special word of thanks to
Rob Huisman and Leon Huijsmans of Interdobs for doing absolutely
everything possible to help us succeed in this project. René van Es also
earns a mention here for helping me with the backend platform installa-
tion and configuration of Design Studio. Of course, the SAP BI commu-
nity on Twitter and the SAP Community Network shouldn't be forgot-
ten. They come up with new ideas and solutions on a daily basis (so join
us!).

Finally, I want to thank my girlfriend, Marieke, for her support and
patience during all those evenings and weekends I was busy working on
this book.

Xavier Hacking

Acknowledgments

22

Writing a book is a journey that you cannot take alone, without the help
of many others. Over the last months, I have learned a lot about the pro-
cess of writing a book, and how important it is that people in your envi-
ronment support you.

I want to thank co-author Xavier Hacking for undertaking this journey
with me. Thanks for the dedication you showed in writing and review-
ing; I greatly appreciated your determination to get each chapter out
with the best quality possible.

I also want to thank my colleagues at Interdobs—especially Rob Huis-
man and Leon Huijsmans, who did everything they could to support us.
We were also very fortunate that we could rely on René van Es and
Sjoerd van Leersum; they seemed to be on call fulltime, and every time
we needed something, they immediately responded.

Finally, I want to thank my family, Susanne, Michael, and Tobias, who
were all very supportive, even when I disappeared every weekend to
continue writing the book. I owe Michael and Tobias a special thanks,
because it was their idea to build a calculator application. Thanks, guys.

Jeroen van der A

23

Design Studio is a data visualization tool that allows you to cre-
ate interactive applications, with content ranging from high-
level dashboards to very detailed OLAP analysis that can be run
on any device.

1 Introduction to SAP Business-
Objects Design Studio

In this chapter we provide a general introduction to Design Studio. We
will give a high-level overview of what the tool is, what the application
developers are able to do and build with the tool, and how it should be
positioned within the ever-growing range of tools in the SAP Business-
Objects Business Intelligence (BI) portfolio.

Applications
versus reports
or dashboards

As you will notice, in this chapter and throughout this book, we refer to
applications as the output from Design Studio. We don’t use terms like
reports or dashboards. The reason for using this terminology is that the
products or output you can create with Design Studio go far beyond the
classic, quite standardized reports you are used to and which make up
the majority of the documents in a business intelligence environment.
These traditional reports are executed within reporting tools like SAP
Crystal Reports or SAP BusinessObjects Web Intelligence. In these tools
the report user has to know how to use the particular reporting tool to
be able to use the reports.

With Design Studio you can create our own user experience by com-
pletely developing the user interface of your applications yourself. This
means that you can keep the application as simple as you want to by
including only those interactivity elements (for example, buttons or fil-
ters) that you really need in the user interface. In addition, you can
adjust the applications exactly to the devices with which the end user is
working. An application interface should look different on an iPhone
than on a desktop computer browser; for example, the iPhone application

Introduction to SAP BusinessObjects Design Studio

24

1

may need relatively bigger buttons to tap with your fingers, while the
desktop computer browser version can be more detailed since you are
using a mouse cursor to navigate. On the other hand, you can add as
many features (and as much complexity) as you want to! It’s possible to
create applications that consist of multiple tabs, pages, and/or layers that
in turn are filled with multiple charts, tables, filters, and buttons that can
trigger all sorts of interactive functionality. You can even include your
own images to create an exact interface.

But, what about dashboards? Yes, all these points are also true for dash-
boards, especially those created with SAP BusinessObjects Dashboards.
But, the dashboards you create with this tool are only good at working
with highly aggregated data. If you want to display or even process large
amounts of data you will probably run into all kinds of performance
problems. Design Studio doesn’t have these limitations.

Shifting from reports to applications means that the work of a business
intelligence developer is changing. It’s moving away from creating
reports that run within standard business intelligence tools, and moving
towards designing applications with completely independent, and user-
and /purpose -specific interfaces. The developer should be well aware of
how a user will deal with such an application interface when working
with Design Studio.

Without further ado, let’s get started. In this first chapter, we’ll discuss
two main topics: first, we’ll explain what Design Studio is (Section 1.1),
and, second, we’ll talk about how Design Studio relates to the other
products in the SAP BusinessObjects BI portfolio (Section 1.2). All the
topics that are mentioned in this chapter will be discussed in more detail
later in the book.

1.1 What Is Design Studio?

Design Studio is one of the latest applications SAP has released in its
BI/analytics portfolio. It provides a complete toolset for SAP Business-
Objects BI developers to create analytical applications that run on top of
SAP NetWeaver BW and SAP HANA data sources. These applications are

What Is Design Studio?

25

1.1

fully integrated in the SAP BusinessObjects BI platform and can be rolled
out on a corporate-wide scale.

Mobility firstFollowing SAP’s mobility first approach, Design Studio applications,
which are created in an Eclipse-based application design environment,
are fully HTML5-compatible and therefore can be executed on any
device, whether it is a personal computer with a browser or a mobile
device like the iPad or iPhone (Figure 1.1).

HTML5In addition to allowing users to design analytic content that is centrally
governable and that ranges in complexity from simple templates to fea-
ture-heavy applications, Design Studio also enables the building of
applications that have built-in iPad support and are immediately com-
patible with standard web browsers and mobile devices (using HTML5).
It also offers native support for SAP HANA and SAP NetWeaver BW.

Figure 1.1 Design Studio Overview

Introduction to SAP BusinessObjects Design Studio

26

1

1.1.1 Development Environment

The Design Studio development environment provides a WYSIWYG
(what you see is what you get) toolset in which you can drag and drop the
components that you want to use in an application and edit the layout
with pixel-precise detail. This kind of toolset allows you to have a con-
stant understanding of how the application is going to look, without
having to execute and test the application in a browser or on a mobile
device every time you make a change to it. We’ll discuss the Design Stu-
dio IDE in more detail in Chapter 5.

1.1.2 Components

A wide set of design components is predelivered with Design Studio.
These components are the building blocks of your applications. Design
Studio offers analytical components like charts and tables to display and
visualize data from data sources. Additionally, a number of filter, text,
image, and button components can be used to add interactive features to
the application. A set of container components is also available to group
other components and to create applications with multiple pages. We’ll
discuss these components in more detail in Chapter 7.

In addition to these standard components, third-party developers are
able to create their own components with the Design Studio SDK.

1.1.3 Data Sources and Platforms

InfoProviders, BEx
queries, analytic
and calculation

views

Design Studio can be used with the SAP BusinessObjects BI platform and
with the SAP NetWeaver BW platform. When connected to an SAP
NetWeaver BW environment, Design Studio can connect to SAP
NetWeaver BW InfoProviders, BEx queries, and BEx query views. Appli-
cations can be saved to the SAP NetWeaver BW system and be executed
on the SAP NetWeaver BW Java stack.

When connected to an SAP BusinessObjects BI platform, Design Studio
can use SAP NetWeaver BW data sources, as well as SAP HANA analytic
and calculation views. These are defined on the platform in the OLAP

Connections screen. As of this writing, Design Studio does not cur-
rently support universes; however, this functionality is planned for

Introduction to SAP BusinessObjects Design Studio

28

1

1.1.6 Templates and Themes

Predefined content
for desktops and

iPads

Design Studio comes with a set of predefined templates and themes for
desktop, iPhone, and iPad applications; the goal here is to ease and
quicken the development process. The themes influence the way compo-
nents—and thus the application—look. For example, in the iPad-specific
theme, the components are designed to be pressed by fingers instead of
by a computer mouse.

Templates are preformatted Design Studio applications in which a layout
is already defined and a number of components are included. These
templates can be used as a starting point to develop a custom applica-
tion. Figure 1.2 shows one of the iPhone templates in Design Studio.

Figure 1.2 Design Studio iPhone Template

What Is Design Studio?

29

1.1

1.1.7 Application Execution

SAP
BusinessObjects
Mobile

As mentioned at the beginning of this section, in line with SAP’s mobility
first strategy, Design Studio applications are fully supported to run on
mobile devices. You can run applications in a mobile web browser by
entering the URL of the application, or open them within the SAP
BusinessObjects Mobile application (Figure 1.3 and Figure 1.4). We’ll
discuss the SAP BusinessObjects Mobile application in Appendix C.

Using the Design Studio applications on a desktop computer is, of
course, also possible. Applications can be started using the direct URL of
the application, or from within the SAP BusinessObjects BI Launch Pad
portal environment.

Figure 1.3 Design Studio Application Running in SAP BusinessObjects Mobile: Part 1

Introduction to SAP BusinessObjects Design Studio

30

1

1.2 Design Studio and Existing SAP BusinessObjects
BI Environments

BEx WAD and BEx
Web Analyzer

Since the acquisition of Business Objects by SAP in 2007, the SAP BI
frontend portfolio has changed dramatically. Before the acquisition,
there were only a few options in the SAP NetWeaver BW toolset to
present data from the SAP NetWeaver BW system to the end user. With
BEx Analyzer you could create workbooks in MS Excel, and with BEx
Web Analyzer you were able to run BEx queries in a web-based environ-
ment. BEx Web Application Designer allowed you to develop interactive
web applications based on SAP NetWeaver BW InfoProviders and BEx
queries.

Figure 1.4 Design Studio Application Running in SAP BusinessObjects Mobile: Part 2

Design Studio and Existing SAP BusinessObjects BI Environments

33

1.2

SAP BusinessObjects Web Intelligence offers a more self-service–like
approach and allows the end user to create and edit reports in an ad hoc
way. Figure 1.5 shows an example of a highly standardized report cre-
ated with SAP Crystal Reports. Figure 1.6 shows an example of an SAP
BusinessObjects Web Intelligence report.

Figure 1.5 SAP Crystal Reports Report

Introduction to SAP BusinessObjects Design Studio

34

1

Dashboarding and Application-Creation Tools

The purpose of dashboarding and applications is to build engaging expe-
riences. This includes delivering the right information to users, tracking
key performance indicators (KPIs) and summary data, and building cus-
tom experiences that suit users’ needs.

The dashboarding and application category includes Design Studio and
SAP BusinessObjects Dashboards. With SAP BusinessObjects Dash-
boards, you can create highly visualized dashboards, showing data with
a high level of aggregation. Such a dashboard could, for example, display
the company’s or department’s KPIs. Dashboards created with SAP
BusinessObjects Dashboards have a fixed layout and can’t be edited by
the end user. Just as with Design Studio, the complete interface has to
be designed by the dashboard developer. Figure 1.7 shows an example
of a dashboard created with SAP BusinessObjects Dashboards. (In Chap-
ter 2, we will discuss SAP BusinessObjects Dashboards in more depth
and compare it to the functionality that is available in Design Studio.)

Figure 1.6 SAP BusinessObjects Web Intelligence Report

Design Studio and Existing SAP BusinessObjects BI Environments

35

1.2

Discovery and Analysis

Finally, the purpose of discovery and analysis is to discover, predict, and
create. The discovery and analysis category in the SAP BusinessObjects
BI portfolio consists of four tools: SAP Lumira, SAP BusinessObjects
Explorer, SAP BusinessObjects Analysis (edition for Microsoft Office,
edition for OLAP), and SAP Predictive Analysis. These are all tools that
give end users the freedom to perform their own analysis. The user
starts with a set of data and some questions about that data and uses the
tool to find and eventually present the answers.

SAP Lumira (Figure 1.8) is a locally installed tool that can connect to sev-
eral types of data sources, such as SAP HANA and CSV files. It offers an
interface to select, clean, combine, manipulate, and enrich data from
multiple data sources and finally visualize it with tables and charts.

Figure 1.7 SAP BusinessObjects Dashboards Dashboard

Introduction to SAP BusinessObjects Design Studio

36

1

With SAP BusinessObjects Explorer, you get a very easy-to-use, web-
based environment to ask questions about a data set in a Google-like
way (Figure 1.9).

Figure 1.8 SAP Lumira

Figure 1.9 SAP BusinessObjects Explorer

Design Studio and Existing SAP BusinessObjects BI Environments

37

1.2

SAP BusinessObjects Analysis is the successor to BEx Analyzer and is the
tool used to perform OLAP analyses on multidimensional data sources
like SAP NetWeaver BW InfoCubes (Figure 1.10). The product is deliv-
ered in an MS Office and a web-based variant. The MS Office version
integrates this reporting tool in MS Excel and MS PowerPoint; the web-
based variant is integrated in the SAP BusinessObjects BI Launch Pad.

1.2.2 Content Creation and Consumption

As you may already have noticed in the previous section, not all tools
are used by end users. Table 1.1 shows this clear distinction, where the
very fixed reporting outputs (like the SAP Crystal Reports documents,
the dashboards from SAP BusinessObjects Dashboards, and the Design
Studio applications) are completely created by developers from the IT
department. The business users work with the other tools to create their
own reports and make custom analyses on their own.

Figure 1.10 SAP BusinessObjects Analysis, Edition for MS Office

Introduction to SAP BusinessObjects Design Studio

38

1

Four levels of
business users

SAP determines four levels of business users: executive, senior manage-
ment, business analysis, and individual contributors. In Table 1.2, the
products that present more aggregated data in a fixed way are toward
the top of the table, and the products that provide more detailed and ad
hoc reporting solutions are on the bottom. The broad scope of Design
Studio is clearly highlighted here—as you can see, the solution is men-
tioned for all the user groups in the dashboarding and applications seg-
ment, as well as the top two user groups in the discovery and analysis
segment.

Reporting Dashboarding
and Applications

Discovery and
Analysis

IT � SAP Crystal
Reports

� Design Studio

� Dashboards

� Design Studio

Business Users � Web
Intelligence

� Exploration
Views

� Analysis

� Explorer

� SAP Lumira

Table 1.1 Content Creators by Category

Reporting Dashboarding
and Applications

Discovery and
Analysis

Executives None � Design Studio

� Dashboards

� Exploration
Views

� Design Studio

� Explorer

Senior Manage-
ment

� Web
Intelligence

� Design Studio

� Dashboards

� Exploration
Views

� Design Studio

� Explorer

� Analysis

Business
Analysts

None � Design Studio � Explorer

� Analysis

� SAP Lumira

Table 1.2 Content Consumption by Category

Design Studio and Existing SAP BusinessObjects BI Environments

39

1.2

Table 1.3 shows the various options for content consumption environ-
ment and the SAP BusinessObjects BI tools. The options are a desktop
computer with a local installation of the tool, a web-based version of the
report through the SAP BusinessObjects BI Launch Pad, and a mobile
device. As you can see, almost all the solutions offer reports that are
accessible through mobile devices with SAP BusinessObjects Mobile,
which is available for iOS and Android devices.

Individual
Contributors

� SAP Crystal
Reports

� Web
Intelligence

� Design Studio � Analysis
(edition for
Microsoft
Office)

Reporting Dashboarding
and Applications

Discovery and
Analysis

Desktop � SAP Crystal
Reports

� Web
Intelligence

� Dashboards � Analysis
(edition for
Microsoft
Office)

� SAP Lumira

Web-Based � SAP Crystal
Reports

� Web
Intelligence

� Design Studio

� Dashboards

� Exploration
Views

� Design Studio

� Explorer

� Analysis
(edition for
OLAP)

Mobile � SAP Crystal
Reports

� Web
Intelligence

� Design Studio

� Dashboards

� Exploration
Views

� Design Studio

� Explorer

Table 1.3 Content Consumption Environment by Category

Reporting Dashboarding
and Applications

Discovery and
Analysis

Table 1.2 Content Consumption by Category (Cont.)

Introduction to SAP BusinessObjects Design Studio

40

1

1.3 Summary

In this chapter we gave a high-level introduction to Design Studio. We
went through the most important features of the tool, and we discussed
its position within the SAP BusinessObjects BI portfolio.

Since Design Studio has such a great overlap with SAP BusinessObjects
Dashboards and BEx Web Application Designer, the next chapter is ded-
icated to comparing these three applications.

41

Design Studio is not the only option in the SAP BI portfolio to
create interactive BI apps. In fact, there are three! It’s time to
introduce them to you and make some comparisons.

2 SAP BusinessObjects Design
Studio vs. SAP BusinessObjects
Dashboards vs. BEx Web Application
Designer

The number of tools in the SAP BI portfolio increased significantly over
the past five years, and, inevitably, some tools contain features that are
also included in other tools. Because the objective of SAP Business-
Objects Design Studio overlaps with two of SAP’s existing products, it is
important to identify the differences among the three.

This chapter offers a discussion of how Design Studio is different from
SAP BusinessObjects Dashboards and BEx Web Application Designer. If
you’re already familiar with the basic functionality of SAP Business-
Objects Dashboards and BEx Web Application Designer, you’ll want to
skip down to Section 2.3 for an understanding of how they differ from
Design Studio. If you’re new to the toolset, or would like a quick
refresher, you can read Section 2.1 and Section 2.2 for a quick overview
of their functionalities.

2.1 SAP BusinessObjects Dashboards

SAP BusinessObjects Dashboards is SAP’s current premier dashboarding
solution. Since the acquisition of Business Objects by SAP in 2007, it has
been a core part of the SAP BusinessObjects BI portfolio. With SAP
BusinessObjects Dashboards, you can create dashboards with great-

Design Studio vs. Dashboards vs. BEx Web Application Designer

42

2

looking data visualizations and design interactive scenarios without
much programming knowledge.

Visualizations for
decision making

Dashboards are visual displays of information that are able to support
the user of the dashboard in making decisions (Figure 2.1).

The user should be able to see this information at a glance, without hav-
ing to perform a lot of manual activities (clicks) before he can find the
information he is looking for. Therefore, a dashboard should focus on
only those performance indicators that are really relevant for the user to
make a certain decision. A dashboard can be used, for example, to pro-
vide a sales manager with a high-level overview of the sales performance
over time for all the sales regions. He can compare regions with each
other, discover the high and low performers, see trends over time, and

Figure 2.1 Example of a Dashboard Created with SAP BusinessObjects Dashboards

SAP BusinessObjects Dashboards

43

2.1

so on. Such a dashboard could, for example, trigger the sales manager to
take action in a specific region if sales went in the wrong direction.

Purpose of
dashboards

A dashboard shows the course of a dataset over a certain time period in
a series of performance indicators. To visualize the data, components
like charts, tables, gauges, and maps can be used. Colors can be used to
separate data series from each other or highlight a certain result (alert-
ing). Some basic level of drilling down and filtering data can be provided
in a dashboard; however, a lot of the information is quite fixed. Other
reporting tools are often more suited for highly detailed reporting, data
analysis, and data exploration.

What-if scenariosInteractive scenarios—often referred to as what-if scenarios—let the user
interact with the dashboard by adjusting one or more variables to see
how the output changes. A simple example is a dashboard that can cal-
culate the monthly interest payments on a mortgage loan. There are
three variables in the formula to calculate the monthly payment: the
loan amount, the interest rate, and the repayment period. The dash-
board can, for example, consist of three input controls—let’s say some
sliders—to input the values for these variables. The monthly payment
amount can be displayed in a gauge. When the user moves any of the
sliders, the payment amount changes too, based on the underlying data
model (formula). Increasing the interest rate will also increase the
monthly payment amount.

In this section, we’ll give you a brief overview of SAP BusinessObjects
Dashboards by walking you through some of the most important things
you should know about the tool. Again, if you’re already familiar with
the SAP BusinessObjects Dashboards tool, skip on ahead.

2.1.1 Setting Up a Dashboard

Microsoft ExcelDeveloping a basic dashboard with SAP BusinessObjects Dashboards is
pretty straightforward and doesn’t require much knowledge or training
to get started. It is all about dragging and dropping the components—
like charts or maps—in the right place, tweaking the look and feel of the
components, and using some Microsoft Excel magic to connect the data
to these components. Yes, you read that right: Microsoft Excel. Before
SAP changed the product name to SAP BusinessObjects Dashboards, the

Design Studio vs. Dashboards vs. BEx Web Application Designer

44

2

tool was called Xcelsius, which—you may notice—sounds a lot like
Excel. In fact, SAP BusinessObjects Dashboards was originally devel-
oped to turn Excel spreadsheets into interactive dashboards with visual-
izations that couldn’t be provided with standard Excel charts. Even in
the current version of SAP BusinessObjects Dashboards, the Excel
spreadsheet still has a very important position.

Design
environment

Figure 2.2 shows the SAP BusinessObjects Dashboards design environ-
ment, including the Excel spreadsheet. Not only can this spreadsheet be
used to fill cells with data, but a wide range of Excel formulas are also
usable. This means you can make calculations, use if/then statements,
and look up values (i.e., with the VLOOKUP formula). These formulas stay
active when you run the dashboard. So if a value in a certain spreadsheet
cell changes, it will have a direct effect on the outcome of any formula
that uses this cell.

Figure 2.2 The SAP BusinessObjects Dashboards Design Environment

SAP BusinessObjects Dashboards

45

2.1

Handy features such as formatting and multiple spreadsheet tabs are also
available, just as in the actual Excel software.

The left side of the screen shows a list of all available components. To
use a component, you can simply drag it to the canvas in the middle of
the screen and use the mouse to adjust the size and the position of the
component.

On the right side of the screen are the properties of the selected compo-
nent. Here the developer can connect the component to the data that is
put into the spreadsheet. After executing this data binding, the compo-
nent—in the case of Figure 2.2, a Line Chart component—will visualize
the data set. The trick is that you can change the values of the bound
cells to make the dashboard really interactive. In the Property tabs,
there are a legion of settings and tweaks you can use on the component,
such as adding labels and titles and setting up the formatting and posi-
tioning for these text items. Furthermore, the look and feel of the com-
ponent in terms of color and size (i.e., thickness of lines and markers)
can be completely adjusted. Even alerts can be activated on a certain
group of components. With these alerts, the color of a country on a map
or a bar in a bar chart can change based on the value it represents; for
example, good results could be shown as green, while bad results could
be shown in red.

2.1.2 Components

SAP BusinessObjects Dashboards comes with a very large set of standard
components. Let’s go through them so you get an understanding of the
visualization and interactivity possibilities this tool offers.

Charts

The following standard chart types are available. These charts work
more or less in the same way and have the same properties overall.

� Line chart

� Pie chart

� Column chart

Design Studio vs. Dashboards vs. BEx Web Application Designer

46

2

� Stacked column chart

� Bar chart

� Stacked bar chart

� Area chart

� Stacked area chart

� Combination chart (both lines and columns are possible)

In addition to these charts, a number of more advanced charts are avail-
able to choose from. These charts are more unique in their purpose and
setup.

� OHLC chart

� Candlestick chart

� Bubble chart

� XY chart

� Radar chart

� Filled radar chart

� Tree map

� Horizontal bullet chart

� Vertical bullet chart

� Sparkline chart

� Waterfall chart

Selectors

Selectors are used for interactivity options: to set filters on data, make
selections, push a certain value to a spreadsheet cell, or create menus in
the dashboard user interface. The following selector components are
available for these purposes:

� Accordion menu

� Checkbox

� Combo box

� Filter

� Fisheye picture menu

SAP BusinessObjects Dashboards

47

2.1

� Sliding picture menu

� Icon

� Label-based menu

� List box

� List view

� List builder

� Radio button

� Hierarchical table

� Scorecard

� Ticker

� Toggle button

� Push button

� Spreadsheet table

� Play selector

Single Value

Single value components are used to display or input single values of
data. For this purpose, SAP BusinessObjects Dashboards delivers a set of
dials, gauges, horizontal and vertical progress bars, and single and dual
sliders.

Maps

One of the most interesting categories of components is the maps cate-
gory. Around 100 maps of countries and continents can be used in a
dashboard. Each map is subdivided into regions, and for each region a
mouse-over value can be shown. When activating alerts, you can color
the regions based on their performance.

Containers, Text, Art, and Background

Container components can contain multiple other components. When
you move the container, all components in this container will be moved
as well. SAP BusinessObjects Dashboards has three containers: the panel

Design Studio vs. Dashboards vs. BEx Web Application Designer

48

2

container, which is a panel with a title on top, the tab set container,
which has multiple tabs with panels, and the canvas container, which is
invisible when the dashboard is running but can be handy during devel-
opment.

Text labels can be put anywhere in the dashboard. In addition, a number
of art components are included to draw lines, rectangles, and circles, as
well as create backgrounds. There is also a component to load an image
or an SWF file into the dashboard.

Other Components

Besides all the categories of components mentioned above, a set of more
specific components is included. Examples are the Print button, the
URL button, a Trend icon, and a Calendar component.

After going through this list of components, it should be clear that SAP
BusinessObjects Dashboards offers a very wide range data visualization
and interactivity features to tackle most dashboarding challenges.

2.1.3 Data Connectivity

We already talked a bit about the role of the Excel spreadsheet in SAP
BusinessObjects Dashboards. But in a business environment, we want a
dashboard or report to show fresh or even live data directly loaded from
a business system or a data warehouse like SAP NetWeaver BW—and, of
course, without having to perform repetitive manual activities every
time the dashboard needs updated data. Using Excel to store the data
and to upload it into a dashboard therefore is not a workable solution.

Data sources SAP BusinessObjects Dashboards comes with a number of connectivity
options to load data from a data source into the dashboard. In the Data
Manager, the following connection types can be set up with data
sources:

� SAP NetWeaver BW connection (BICS): A connection to a BEx query
or BEx query view can be made with this connection type.

� Web Service Query (Query as a Web Service): An SAP Business-
Objects universe can be published as a QAAWS, which can be read
from this connection type.

SAP BusinessObjects Dashboards

49

2.1

� Web service connection.

� XML data and Excel XML maps.

� Live Office connections.

These connections can read values for variables from spreadsheet cells
and return the output of the data request to a range of cells in the
spreadsheet. From there the data can be further processed and eventu-
ally be bound to the components.

Universes and
queries

In addition to these connectivity options, SAP BusinessObjects Dash-
boards also supports the creation and usage of SAP BusinessObjects BI
4.0 queries. These queries correspond with the SAP BusinessObjects BI
4.0 queries that can be created in the other SAP BusinessObjects BI tools
like SAP BusinessObjects Web Intelligence and SAP Crystal Reports for
Enterprise. They also use the same workflow. SAP BusinessObjects UNX
universes and SAP NetWeaver BW BEx queries can be used as data
sources.

The big advantage here is that the query results can be bound directly to
the components, without having to use the spreadsheet. In the SAP
BusinessObjects BI 4.0 query, one or more filters with prompts can be
created. With the Query Prompt Selector component, the dashboard
user can change the input value for such a prompt.

2.1.4 Publishing

Exporting and
distributing

When the dashboard is finished, it should be published so the users can
start using it from their own computers. To do this, you have to export
the dashboard from the design environment. This export results in an
SWF (Flash) file. If the dashboard developer exports the dashboard
locally (on his own computer hard drive), the file can also be embedded
into a PDF, MS PowerPoint, MS Word or MS Outlook file; an HTML
website; or an Adobe Air application. A nonembedded SWF file can be
run with a browser that has Adobe Flash Player installed.

Besides exporting locally and distributing the exported file, you can
publish the dashboard to the SAP NetWeaver BW environment and the

Design Studio vs. Dashboards vs. BEx Web Application Designer

50

2

SAP BusinessObjects BI 4.0 platform. When published to the SAP
NetWeaver BW environment, the dashboard becomes an object that can
be run from the SAP NetWeaver BW Java portal, in the same way that
you can execute BEx queries as web queries. The dashboard can be run
from a web URL address. When published to the SAP BusinessObjects BI
platform, the dashboard will be available in the BI Launch Pad.

Adobe Flash and
HTML5

Adobe Flash has become a huge barrier to running dashboards on
mobile platforms and devices like the Apple iPad, since they don’t sup-
port Flash and there are no signs that they will in the near future. With
the release of SAP BusinessObjects BI 4.0 service pack 05, it is now pos-
sible to export a dashboard into HTML5 format. This HTML5 dashboard
can be run from SAP BusinessObjects Mobile, which is available for
Apple iOS and Android. In SAP BusinessObjects Dashboards 4.0 service
pack 05, not all components can be exported into the HTML5 format
yet; only the SAP BusinessObjects BI 4.0 query connections are sup-
ported.

2.1.5 Software Development Kit (SDK)

Add-ons The SAP BusinessObjects Dashboards Software Development Kit (SDK)
provides Adobe Flex developers with the possibility to create compo-
nents for SAP BusinessObjects Dashboards. These add-ons can provide
additional functionality to SAP BusinessObjects Dashboards on top of
the default set of components and connectivity options.

Google Maps
integration

In previous years, a number of interesting add-ons have been developed
by a small number of third parties. There are add-ons available that
achieve additional connectivity options, for example to load data from
CSV files, SAP BusinessObjects Web Intelligence reports, or Sales-
force.com accounts. Other add-ons provide more advanced data visual-
ization possibilities, such as adding more specific charts to the list of
components, and adding a Google Maps integration component (see
Figure 2.3). There is even a specific add-on available with advanced
dashboard printing features.

BEX Web Application Designer

51

2.2

2.2 BEX Web Application Designer

Web applicationBEx Web Application Designer is part of the SAP NetWeaver BW Busi-
ness Explorer (BEx) toolset, and is used to create web applications. Fig-
ure 2.4 shows an example of such an application. You can compare these
web applications to the BEx Web Analyzer workbooks that can be cre-
ated with BEx Web Analyzer. This tool is based on the same principles,
only now the report/application runs not as a Microsoft Excel work-
book, but as an HTML web application in a web browser.

A web application can contain objects like analysis tables, charts, or
maps to present data. Buttons can be used to create a navigation menu to
control which objects should be shown or hidden. With the help of filter
and navigation panes, the data can be filtered and the layout can be
adjusted.

0ANALYSIS_
PATTERN

An example of a web application is the standard template that is used
when executing a BEx query in BEx Web Analyzer (Figure 2.4). BEx Web

Figure 2.3 Dashboard Created with SAP BusinessObjects Dashboards and the Google
Maps Plugin Add-On

Design Studio vs. Dashboards vs. BEx Web Application Designer

52

2

Analyzer is in fact a BEx Web Application Designer template
(0ANALYSIS_PATTERN) offering an analysis table, a navigation pane, a
series of buttons with functionalities like exporting to MS Excel and
opening another report, and a dropdown box to switch between an
analysis table and a chart.

In this section, we’ll give you a brief overview of BEx Web Application
Designer by walking you through some of the most important things
you should know about the tool. As with SAP BusinessObjects Dash-
boards, if you’re already familiar with BEx Web Application Designer,
skip on ahead.

2.2.1 Setting Up a Web Application Template

Let’s have a look at BEx Web Application Designer to get some basic
knowledge of how this tool works. BEx Web Application Designer looks
a bit like the development environment of SAP BusinessObjects Dash-
boards (see Figure 2.5). On the left there is a list of available web items.

Figure 2.4 BEx Web Analyzer

BEX Web Application Designer

53

2.2

These can be dragged into the web application layout. In contrast to add-
ing components to the SAP BusinessObjects Dashboards canvas from the
components list, here it is not possible to place a web item precisely
where you want it. If you add a second web item, it will be positioned
right next to the first component. To adjust the positioning of the web
items, you can use special container web items. You can also add HTML
tables in which to arrange web items. (It must be noted that is quite a
challenge to create advanced application layouts.) A web application is
saved as a web template, and the result of these actions is saved in a web
template object.

Figure 2.5 BEx Web Application Designer Design Environment

BEX Web Application Designer

55

2.2

The properties of the selected web item are shown under the list of web
items in BEx Web Application Designer (refer back to Figure 2.5). A new
data provider can be created here, and existing ones can be connected to
the web item. In the web item parameters, some web-item-specific set-
tings can be adjusted, such as the width and height of the web item and
the maximum number of displayed values.

XHTMLThe XHTML tab shows the web items and some corresponding settings.
This XHTML is fully editable, so this can be used to edit a web applica-
tion. All used objects are listed in the Overview tab.

2.2.2 Web Items

Web itemsBEx Web Application Designer provides a number of web items, which
are divided into three categories: standard, advanced, and miscellaneous
web items. These web items can be compared to the components in SAP
BusinessObjects Dashboards and are the building blocks of a web appli-
cation. Below we briefly outline the three categories of web items.

Standard Web Items

The standard web items are as follows:

� Analysis
This is a table-like item that presents the data provider result in rows
and columns.

� Chart
BEx Web Application Designer offers a wide range of chart types:

� Horizontal line chart

� Vertical line chart

� Bar chart

� Column chart

� Horizontal area chart

� Vertical area chart

� Pie chart

Design Studio vs. Dashboards vs. BEx Web Application Designer

56

2

� Doughnut chart

� Split pie chart

� Polar chart

� Radar chart

� Scatter

� Time scatter

� Speedometer (gauge)

� Portfolio chart

� Histogram

� GANTT chart

� MTA chart

� Heat map

� Delta chart

� Report
Reports created with BEx Report Designer can be embedded into a
web application using this web item.

� Navigation pane
This item shows the available characteristics and their positions (col-
umns, rows, free). A characteristic can be dragged from this pane into
the analysis table.

� Filter pane
This item allows the user to easily set up filters on one or more char-
acteristics.

� Button group
Buttons can be programmed with standard commands or a custom
script.

� Dropdown box, radio button group, checkbox group, list box
These web items function as custom filters.

� Hierarchical filter
This item lets a user navigate through a hierarchy for a specific char-
acteristic and set up filters on hierarchical nodes.

BEX Web Application Designer

57

2.2

Advanced Web Items

The advanced web items are, in contrast to the standard web items,
more focused on grouping and placing web items than on displaying
data. For this purpose, a container item, a container layout item, a tab
pages item, and a group item are available. All these web items are able
to arrange other web items in a certain layout.

With the map item, the BEx Map feature can display data in a map.
There are also web items for displaying system messages and info fields
to show all kinds of BEx query–related information (i.e., the most recent
data update date of the InfoProvider).

Integrated
Planning

The input field item is interesting because it can be used for SAP
NetWeaver BW Integrated Planning (IP) web applications to enter val-
ues. It can also be used to enter a filter by typing the filter value in a
field.

Miscellaneous Web Items

With the list of conditions and list of exceptions items, all available con-
ditions and exceptions that are available in the connected BEx query can
be displayed. The user of the web application can activate and deactivate
the conditions and exceptions from this web item.

A ticker item can present data as a moving ticker, like the ones news
channels use at the bottom of the screen. There is a text item to add text
objects to the web application, and, with the menu bar item, a number
of buttons with commands can be created. Furthermore, this category
consists of web items that work on the background and can, for exam-
ple, add custom scripts to the web application and select which options
should be shown in the context menus (right click) of the other web
items.

2.2.3 Publishing

A web template for a web application has to be published to the SAP
NetWeaver BW environment. The web template then becomes an object
that can be run from the SAP NetWeaver BW Java portal, the same way

Design Studio vs. Dashboards vs. BEx Web Application Designer

58

2

you can execute BEx queries as web queries or, as we have seen earlier,
dashboards from SAP BusinessObjects Dashboards. The web application
can be run from a web URL address.

2.3 Key Differences

Now that you have a basic understanding of the features of SAP
BusinessObjects Dashboards and BEx Web Application Designer, we can
compare them with Design Studio. Table 2.1 compares the three tools in
a number of categories.

SAP BusinessObjects
Dashboards

BEx Web Application
Designer

SAP BusinessObjects
Design Studio

Platform SAP NetWeaver BW Java
Portal, SAP Business-
Objects 4.0 BI Launch
Pad, SWF file (standalone
or embedded in PDF,
HTML, Adobe Air, MS
Word, MS Outlook, MS
PowerPoint).

SAP NetWeaver BW Java
Portal.

SAP NetWeaver BW Java
Portal, SAP Business-
Objects 4.0 BI Launch Pad.

Output
Format

SWF file or HTML5
(mobile).

Java. HTML5.

Components Very wide range of charts,
maps, containers, and
selection and other graph-
ical components.

Large set of charts, con-
tainers, and customizable
buttons; limited graphi-
cal components.

Limited number of charts,
selection, and graphical
components.

Component
Adjustment
Options

Very high: All components
have a lot of options to
tweak their functionality,
looks, and interactivity
options. In the Excel
spreadsheet, Excel formu-
las can be used for custom
calculations.

High: Components can be
adjusted with high detail.

Medium: Components have
some adjustment options,
but scripting and CSS are
required for advanced
adjustments.

Table 2.1 Key Differences

Key Differences

59

2.3

The remainder of this section describes three images of dashboards/
applications created with the three tools we compared in this chapter.
As demonstrated here, the three versions look a lot alike and have the

SAP BusinessObjects
Dashboards

BEx Web Application
Designer

SAP BusinessObjects
Design Studio

Layout
Develop-
ment Flexi-
bility

High flexibility: Drag and
drop components to the
exact preferred position
(WYSIWYG).

Low flexibility: Contain-
ers and HTML tables/code
have to be used for posi-
tioning.

High flexibility: WYSIWYG,
including relative position-
ing of components.

Data
Connectivity

SAP BusinessObjects uni-
verse (UNX), SAP
NetWeaver BW connec-
tion (BICS), web service
query (Query as a Web
Service), web service con-
nection, XML data and
Excel XML maps, Live
Office connections.

BEx query, BEx query
view, SAP NetWeaver BW
InfoProvider.

BEx query, SAP NetWeaver
BW InfoProvider, SAP
HANA.

Data Input
Options

Interactive scenarios can
be developed using the
Excel spreadsheet.

BI Integrated Planning
options can be incorpo-
rated.

Not available yet.

Scripting
Options

Excel spreadsheet. XHTML, JavaScript, and
ABAP coding.

JavaScript and CSS coding.

SDK SDK available for develop-
ment of custom compo-
nents and connectivity
options.

No SDK available. SDK available in Design Stu-
dio version 1.2.

Mobile HTML5 export for a lim-
ited number of compo-
nents and connectivity
options. These dashboards
can be viewed via SAP
BusinessObjects Mobile.

No options for mobile. Applications are viewable
on any device with an
HMTL5 browser or via SAP
BusinessObjects Mobile.

SAP HANA No support for direct
access to SAP HANA data
sources.

No support for direct
access to SAP HANA data
sources.

Direct access to SAP HANA
analytic views and calcula-
tion views.

Table 2.1 Key Differences (Cont.)

Design Studio vs. Dashboards vs. BEx Web Application Designer

60

2

same functionality. Each dashboard/application contains two charts, a
number of filters, some tabs, and a text object that shows the latest
refresh date of the data.

Comparing the
tools

Figure 2.7 shows the SAP BusinessObjects Dashboards version, Figure
2.8 is the BEx Web Application Designer version, and Figure 2.9 dis-
plays the Design Studio application.

Figure 2.7 Simple Dashboard in SAP BusinessObjects Dashboards

Figure 2.8 Simple Application in BEx Web Application Designer

Summary

61

2.4

2.4 Summary

In this chapter, we introduced two tools from the SAP BI portfolio that
overlap with the features and purpose of Design Studio: SAP Business-
Objects Dashboards and BEx Web Application Designer. We took a
quick dive into the steps and activities required to create a report, dash-
board, or BI application. Next, we reviewed the different components of
the tools that form the building blocks of the development process.
Additionally, we examined the data connectivity options and the pub-
lishing possibilities for each tool. Finally, we discussed the key differ-
ences among the three tools.

Figure 2.9 Simple Application in Design Studio

63

This chapter shows use case scenarios where applications have
been developed in Design Studio and are used by end users in
diverse business scenarios.

3 Usage Scenarios

In this chapter, we will walk through a variety of examples that show
you how applications developed in Design Studio can be used in differ-
ent business scenarios. Each scenario will tell a story of an end user who
is using an application designed for his particular role or task. The sce-
narios will show that Design Studio is able to deliver process support in
very different situations, varying from real-time operational support to
in-depth strategic analysis.

In Section 3.1, Section 3.2, and Section 3.3, we will show very practical
hands-on applications that have been designed to support an opera-
tional workflow: information where you need it and when you need it.
In Section 3.4, we will show an application of Design Studio as a report-
ing tool: an annual company report created for its stakeholders. Finally,
Section 3.5 and Section 3.6 show applications that have been designed
to enable managers to be in control of their business and support in-
depth analysis. For all examples, we will walk you through the basic
functionality of the most important screens in the application.

3.1 Customer Relationship Management

Gym applicationIn this first scenario, we will assume the role of a gym trainer. The main
responsibility of the gym trainer is to look after the clients and help
them achieve the goals they have set for themselves. The role of the
trainer is to assess clients’ progress, help them with their training pro-
gram, and try to motivate people to keep coming back to the gym. One

Usage Scenarios

64

3

of the main key performance indicators for a gym is the rate of subscrip-
tion renewals.

In this section, we will we will walk you through a Design Studio appli-
cation developed for an iPad that allows the trainer to walk around the
gym and immediately access information about a particular customer.

3.1.1 Main Screen

At the start of the day, the trainer immediately wants to get going and
help customers. On the application’s main screen (Figure 3.1), he taps
the Customers button, and a screen opens with a list of the customers
currently logged into the gym. When customers enter the gym, they
have to access the gym with a subscription card. The application has
access to the login data and can provide this list.

Customer list
screen

On the customer list screen, a long list of customers currently at the gym
is available to view. As you can see in Figure 3.2, it is a busy day. A lot
of regulars are in, but the trainer is mostly interested to know if there
are people in that haven’t been in the gym many times before. On the
left side of the screen, there are a few predefined filter buttons for easy
filtering of the customers. When you tap the New Customer button, a

Figure 3.1 Main Screen

Customer Relationship Management

65

3.1

filter is placed on the customer list, and only currently present customers
that have visited the gym fewer than 10 times will show up on the list.

The other buttons are Renewal (for present customers whose subscrip-
tions are running out), Returners (for those customers who are back
after not visiting for quite some time), and Athletes (for those who have
visited the gym frequently in the last few weeks). An Alerts button on
the bottom of the button list is available to show only those customers
for whom an alert is triggered. Such an alert can be triggered for a num-
ber of reasons, which we will discuss later on in this section.

3.1.2 Helping Out New Customers

The list now shows only those customers who have visited the gym 10
or fewer times. It is good practice to follow these customers closely, as
beginners are prone to making mistakes, which could result in an injury
or discouragement. With this list, the trainer on duty is able to watch
this group of customers and help them out where needed (Figure 3.3).

Customer alertsWhen looking at the list, the trainer sees that there is an alert on a cus-
tomer. To view more detailed information about this particular cus-
tomer, he taps that record in the list. A new screen opens (Figure 3.4).

Figure 3.2 Customer List Screen

Usage Scenarios

66

3

The customer information screen shows a lot of information about the
customer: personal information, measurements, goals, and the work-
outs the customer has done in the past few weeks. If alerts are active, the
reasons will be shown at the bottom of the screen.

In this case there are three reasons for an alert: The intake wasn’t com-
pleted, the weight measurement hasn’t been done yet, and the customer
hasn’t been assigned to a workout yet. Based on these alerts, the trainer

Figure 3.3 New Customers Screen with Alerts

Figure 3.4 Customer Information Screen

Customer Relationship Management

67

3.1

will talk to the customer to see if he would like to make an appointment
to finish the intake tasks. As the picture of the customer is also visible on
the customer information screen, the trainer is able to recognize the cus-
tomer in the gym.

3.1.3 Workout Evaluation

Going back to the main customer screen, the trainer can see that there is
another alert. He navigates to the customer information screen, and sees
that the alert is on the workout. Tapping the workout alert opens the
workout screen (Figure 3.5). From here, he can see that the workout was
scheduled for three times a week, but the customer has not managed to
train on all scheduled days for the last few weeks.

Talking to the customer, the trainer learns that he was on vacation and
couldn’t come to the gym. While they are talking, the customer men-
tions that he is planning to run more. A new three days per week work-
out is assigned to him, with more emphasis on exercises for running.

The trainer taps the Edit Workout routine button. Here he can select
from a list with premade workout schedules. He selects the running
workout, and the workout details are displayed. The trainer taps the
Assign button, and, from now on, the customer will be working with
the running workout schedule (Figure 3.6).

Figure 3.5 Workout Evaluation

Employee Management

69

3.2

to constantly monitor how long customers are waiting, there is an oper-
ational view in the team lead’s Design Studio application. Here, he can
see the number of customers waiting and how long the top five waiters
have been on hold.

3.2.1 Main Screen

Monitoring wait
times

As you can see in Figure 3.7, which shows the application’s main screen,
eight customers are waiting at the moment. That is a few more than
there should be, but the top five customers haven’t been waiting longer
than three minutes—so the throughput of the calls at the moment is big
enough to cope with the number of customers that are currently calling.

The team lead concludes that there are currently no issues he has to
address immediately, so he goes on to review some other key figures.

3.2.2 Analyzing Calls by Volume

To review the number of customers that have been calling today, the
team lead taps the customer part of the screen. A new screen opens that
shows him how the number of waiting customers has been during the
day. He can also see how many customers have been calling and see the
maximum waiting times for the day.

Figure 3.7 Call Center Application Main Screen

Usage Scenarios

72

3

3.2.4 Planning

Managing staff
capacity

For planning purposes, the team lead has a short-term and a long-term
responsibility. For the short term, he needs to plan available staff so
there is enough capacity to handle incoming calls. On the planning
screen (Figure 3.10), he can see the planned staff capacity, the staff that
isn’t available, and the staff that is on leave. On the line chart, he can see
the predicted amount of work (in full-time equivalents) for easy compar-
ison to the available staff.

For the long-term, the team lead needs to see the total average staff
capacity shown against the estimated workload for the coming months.
Based on this, the team lead can decide if he needs to hire new agents or
if he can’t afford to renew contracts.

3.2.5 Employee Assessment

Now the team lead wants to look how his team is doing; specifically, he
wants to look at the calls they handled today (Figure 3.11).

Evaluation On the employee assessment screen, the team lead sees a list of his
employees. Next to each employee’s name is a graph showing the calls
they’ve handled and how long the calls took. If the evaluation by the
customer was unsatisfactory, the graph bar is a different color.

Figure 3.10 Short- and Long-Term Planning Screen

Field Sales

73

3.3

3.3 Field Sales

Real estate
application

A real estate agent spends his day talking to prospective buyers and sell-
ers. To do so intelligently, he needs information about the buyer, the
seller, and the property. In addition, because many of his meetings are
out of the office, he needs a portable device from which he can get the
necessary information to be able to better negotiate the terms of a pos-
sible deal. For example, if the real estate agent has an appointment with
a prospective buyer, he wants to know the following pieces of informa-
tion:

� How much interest the buyer has shown.

� Whether there are other prospective buyers.

� The build quality of the property.

Figure 3.11 Employee Assessment

Usage Scenarios

74

3

� The maintenance quality of the property.

� The current asking price and the history of the asking price.

� When the property came on the market.

� The lowest price the seller is willing to accept.

� Whether there are similar properties on sale in the area, and what
their history and quality is.

This is a lot of information, but it all helps the agent to be better able to
discuss and negotiate a possible sale.

3.3.1 Main Screen

Agenda for the day First things first. The real estate agent has to know where and when the
next appointment is. Therefore, the main screen of the application is the
agenda for the day. He can tap the agenda for his next appointment (Fig-
ure 3.12).

When he taps the agenda, he sees the selected appointment with the
customer or seller he will be meeting and the property that will be dis-
cussed. Some general contact information about the customer or seller is

Figure 3.12 Real Estate Agenda

Field Sales

75

3.3

visible in case the agent needs to contact them about the appointment
(Figure 3.13).

3.3.2 Customer Information

If the agent taps the customer’s name, he will see information about the
customer’s known history. Has the customer inquired about other prop-
erties? How many contacts already took place? What is the estimated
value of a potential buyer in terms of annual income? How interested
did the customer seem during previous appointments? In the case of Mr.
Harris, as he is selling his house, it is interesting to know how many pro-
spective buyers there are, how negotiations went in the past, and if
there are circumstances that are important to know about.

In the customer information screen (Figure 3.14), the real estate agent
can see that the current asking price for Mr. Harris’s property is now
$265,000. The property has been on the market for a long time; since
January, the asking price was dropped several times. However, now
there seems to be interest in the property: six customers have visited the
property, and three of them made an offer. Rodrigo Delosantos made

Figure 3.13 Detailed Appointment Information

Usage Scenarios

76

3

the highest offer of about $250,000, but this is still somewhat lower
than the asking price.

3.3.3 Neighborhood Information

To be able to assess the market correctly, a real estate manager needs
information about the neighborhood of the home. He can access this
information by tapping the home address. When he does this, the neigh-
borhood information screen (Figure 3.15) opens.

Neighborhood
house prices

The first information presented to the real estate manager is the mean
house prices per house type. This is the most important information, as
this is the market price to which buyers will compare this house. Under
the house type value numbers, he can see some more measures. There is
some information about population, median income, and housing
prices. These three measures give some information about how the area
has been developing over the last few years.

Figure 3.14 Customer Information Screen

Financial Reporting

77

3.4

3.4 Financial Reporting

Annual company
report application

After looking at three operational scenarios, we will now focus on a
reporting scenario: an annual company report. Typically, annual reports
are highly formatted documents with a lot of key figures about the per-
formance of the company. Additionally, the financial statements are pre-
sented.

In this scenario, a company is publishing its annual report in a Design
Studio application. As the annual report is arguably the most important
communication from the company to the stakeholders, the application
really has to shine in layout, navigation, and readability.

Figure 3.15 Neighborhood Information Screen

Usage Scenarios

78

3

3.4.1 Main Screen

The main screen does not contain much information, but it is still
important because it is the first thing the stakeholders see when they
look at the annual report (Figure 3.16). On the left is a menu that helps
to navigate to the part of the annual report that the reader is interested
in. This navigation help is important, as annual reports can be more than
100 pages long.

3.4.2 Financial Highlights

The financial highlights are a short summary of the financial figures the
company is presenting to the stakeholders (Figure 3.17). In this example,

Figure 3.16 Annual Report Main Screen

Financial Reporting

79

3.4

the top of the screen shows three highlighted key figures about the per-
formance of the company over the past five years. Below that, a number
of the most important financial key figures are displayed.

3.4.3 Letter to the Shareholders

The letter to the shareholders is very different in layout (Figure 3.18)
from the rest of the application; it is a representation of a letter from the

Figure 3.17 Financial Highlights

Usage Scenarios

80

3

CEO of the company to the shareholders, and it provides a broad over-
view of the company. The letter covers the company’s current financial
state, its position in the market, and some future plans. The company
uses this letter to show the company in the best possible light for the
financial analysts who will advise investors about the stock value.

Income statement An income statement is one of the company’s financial statements and
shows the company’s revenues and expenses during a particular period.
It shows the revenues from products and the costs and expenses charged
against these revenues (Figure 3.19). There are official guidelines for
these statements. In this example, you can see that the statement looks
very different from the layout in the previous sections. It is very basic:
just the numbers.

Figure 3.18 Letter to Shareholders

Sales Analytics

81

3.5

3.5 Sales Analytics

Supermarket
application

In the first sections of this chapter, we looked at highly operational
applications and a report for stakeholders. This section is more analyti-
cal, as in this example the branch manager of a supermarket uses an
application (Figure 3.20) to analyze his business.

Figure 3.19 Financial Statement

Usage Scenarios

82

3

3.5.1 Main Screen

The branch manager is responsible for the results of a single supermar-
ket store within a chain of stores. He reports to the area manager, who
is responsible for 50 stores within the area. To be able to run the store,
the branch manager works with a dashboard that shows him how the
shop is doing. The dashboard is divided into four segments: products,
customers, financial, and quality. On the top left you see the numbers
related to products. Below are numbers dividing customers into seg-
ments such as families, singles, and couples. On the top right we have
the numbers related to quality. Finally, the financial numbers are on the
bottom right.

Product

On the product part of the screen, the manager is able to see how sales
are doing in relation to margin. Is a large enough part of his sales high
margin? How are advertised sales going? How is each category doing

Figure 3.20 Supermarket Application Main Screen

Sales Analytics

83

3.5

over time? The store manager can see his sales divided by product cate-
gory and divided by low-, medium-, and high-margin sales. Further-
more, he can see the advertised sales, which are sales of products that
have been advertised in local or national media in the previous two
weeks.

Customer

On the customer part of the screen, the manager is able to see how well
he is doing in terms of acquisition, percentage of wallet, and retention
of customers. He sees the customers grouped into segments: families,
couples without children, and single-person households. The first num-
ber shows the number of new customers in the supermarket. The sec-
ond number shows the percentage of customers that have not bought
anything in the store for the last three months. The last number shows
the average spending per week for the customers in that segment.

Financial

On the financial part of the screen, the manager can look at the results
over the past seven quarters. He can look at a basic representation of the
profit and loss statement for his store.

Quality

Quality is an important measure in a supermarket. To monitor this, the
manager can look at key figures related to quality, such as number of
complaints, results of surprise inspections, number of out-of-stocks, and
number of removed out-of-date products. Finally, he can look at the per-
ceived neatness and cleanliness of the supermarket.

For each of these four segments, a finger tap will open a new screen
with further detail on that segment. Let’s look a little closer at two of the
most important segments: the product segment and the customer seg-
ment.

Usage Scenarios

84

3

3.5.2 Product Segment

In the product segment screen (Figure 3.21), the manager is able to drill
down to look at sales within the segment, as well as individual products.

In the list box, he can tap one of the product segments, which shows the
corresponding detailed analysis. First, there is a line chart that shows the
gross sales, discounts margin, and cost of goods sold over the past 24
months. On the right, the manager has the option to enable or disable
each line for clarity. Below this graph is a bubble graph that shows each
product based on margin, percentage of total sales in the segment, and
growth. If the manager taps one of the dots, the screen automatically
changes to a screen where a detailed product analysis is shown.

Detailed product
analysis

In Figure 3.22, we see a list box on the left. If the manager taps one of the
dots on the bubble chart in the product segment screen (refer back to Fig-
ure 3.21), that product is selected. He can also just swipe to this screen
and manually select a product. Below the product selection list box is the
Prefilter button. This button places a filter on the items that are visible
in the list box component. As the list box places the filter on the data
source, we look at the button as a prefilter. When tapped, this button
opens a popup screen with several options to prefilter the products.

Figure 3.21 Product Segment Screen

Sales Analytics

85

3.5

The options in the popup screen (Figure 3.23) are top sales, most dis-
counts, margin, production quality, and shelf life. The list box on the left
side of the product analysis shows only the products that fall within the
filters made in the popup screen. Tapping one of those filters shows the
analysis of that product.

Discounts and
promotions

Below the timeframe, there is a chart showing the discounts given and
promotion actions made for that product. Clicking on one of the promo-
tions or discounts resets the timeframe of the line chart; it shows from
four weeks before to four weeks after the promotion or discount.

Figure 3.22 Product Analysis Screen

Figure 3.23 Popup Screen with Filter Options

Usage Scenarios

86

3

3.5.3 Customer Segment

In the customer segment screen, the manager can have a more detailed
look at the customer segments in his area. To help him analyze his cus-
tomers, the screen (Figure 3.24) shows a recency-frequency matrix. This
is a more detailed view of his customers. For customer retention, it is
important to look at those customers that haven’t been in his shop for
some time, especially those that used to be frequent customers. Alterna-
tively, it is interesting to see if there are a lot of recent customers that are
not frequent customers; these customers are new and might be per-
suaded to become regular customers. Tapping one of the panels opens a
detailed report of the customers that were assigned to that particular
segment.

3.6 Business Balanced Scorecards

A business balanced scorecard is a framework of activities that managers
can use to track their execution and results. The most visible part of the
balanced scorecard is the visualization of both financial and nonfinancial

Figure 3.24 Customer Segment Screen

Business Balanced Scorecards

87

3.6

key figures. The balanced scorecard is most effective in tracking the rela-
tionships between inputs and processes, and it helps to focus on manag-
ing these components to achieve the goals of the organization. In an
implementation of a balanced scorecard framework, there are a lot of
relationships among components that, in the end, should result in
achieving the defined strategy. The goal of the balanced scorecard is usu-
ally to increase stockholder value. Stockholder value can be increased in
several ways; for example, by improving cost structure, using your
assets more effectively, developing more ways to produce income, or
increasing your customer value.

For the example in this section, we are going to assume the role of the
board of directors of a vegetable company. We will see a couple of stra-
tegic initiatives that can be checked, and then discuss how they interact
in all the business balanced scorecard perspectives. The company in our
example wants to keep growing, so they will look at initiatives to add
value for their customers (i.e., supermarkets) and improve usage of
assets to increase shareholder value. Specifically, their goal is twofold:

� To improve the turnaround time for processing stock. By reducing
turnaround time in the factory, the number of harvests the company
can process should increase. This means that they can process some
products twice a year, instead of once a year, which dramatically cuts
down the necessary stock for that finished product.

� To reduce instances of supermarkets both running out of stock, as
well as having so much stock that it passes its expiration date. This
added value for the customer will result in the vegetable company
being able to ask for higher prices.

3.6.1 Main Screen

Vegetable
application

Figure 3.25 shows the main screen of the application. In the financial
perspective, the board sees the gross margin percentage, the stock
amount of finished goods, and the investment in machinery. It seems
that the gross margin percentage and investments are doing okay, but
the stock amount has a red signal. Naturally, they want to take a closer
look to understand why this is.

Summary

91

3.7

3.7 Summary

In this chapter, we looked at several use cases for Design Studio applica-
tions, and discovered that Design Studio can be used in many scenarios.

In the gym scenario, we saw a workflow that was supported by a real-
time application. Further, because the application was viewable on an
iPad, the employee could go anywhere on the premises and still have all
the information he needed to help customers.

The call center scenario showed that an application can be a combina-
tion of operation information and tactical analysis. The team lead was
able to use an application to see in real time if calls were being answered
in an orderly fashion. At the same time, he could sit down and have a
look at the planning for the next weeks, or even look months ahead for
personnel management.

The real estate scenario showed the advantage of mobility. The agent
could travel from place to place without having to go back to the office
to collect the needed information. Because the information was so
readily available, the agent could use the information more and could
make better deals because of it.

The branch manager scenario showed how a Design Studio application
can support managers. The manager had access to several different types
of information, and could drill down to very detailed operational data.

Finally, the board of directors scenario showed that Design Studio can
support a complicated balanced scorecard implementation. The applica-
tion could provide insight about how one KPI influences another, and
how sometimes the relationships between KPIs work out differently
than was anticipated during the strategic design process.

Architecture, Components, and Prerequisites

95

4.1

� SAP NetWeaver Portal
To be able to deploy Design Studio applications to SAP NetWeaver
Portal, you need to install a component and perform some additional
configurations.

� Design Studio client tool
The Design Studio client tool is an application that has to be installed
locally on a Microsoft Windows computer.

Note that when you choose to use the SAP BusinessObjects BI platform
as the platform for Design Studio, you don’t need to set up SAP
NetWeaver BW and SAP NetWeaver Portal. Similarly, if you want to
connect directly to the SAP NetWeaver BW system and host your Design
Studio applications there, you don’t need to set up the SAP Business-
Objects BI platform.

With the SAP BusinessObjects BI platform, you can use the data connec-
tions that are defined in the Central Management Console (CMC) as
OLAP connections. (Later in this chapter, we will set up such OLAP con-
nections to connect to an SAP NetWeaver BW system and an SAP HANA
system; this is discussed in Section 4.4.5 and Section 4.4.6.) When you
connect directly to an SAP NetWeaver BW system, the data connections
are defined in your local SAP Logon. In this scenario it is only possible to
connect to a single SAP NetWeaver BW system at a time.

To move Design Studio applications and files from the development
environment to other environments (QA, production), the SAP
BusinessObjects BI platform uses Promotion Management, also known
as Lifecycle Management Console (LCM). In SAP NetWeaver BW scenar-
ios the SAP Transport Management System (STMS) can be used.

Another important difference between the two scenarios is that running
a Design Studio application on mobile devices is only supported by the
SAP BusinessObjects BI platform.

Of course, these components all have some landscape prerequisites, and
the actual execution of Design Studio applications has browser require-
ments. We’ll look at all of these next.

Architecture, Components, and Prerequisites

97

4.1

4.1.3 SAP NetWeaver Portal

To use SAP NetWeaver Portal with Design Studio, the following condi-
tions must be met:

� SAP NetWeaver Portal is installed with the BI Java or Enterprise Por-
tal Core usage type.

� BI Java is configured for use with SAP NetWeaver BW.

4.1.4 Design Studio Client Tool

To install the client tool for Design Studio on your local machine, you
need the following components to be installed:

� MS Windows Vista SP2 or Windows 7 SP1, 32-bit or 64-bit

� Java Runtime Environment 1.6 or 1.7, 32-bit

� MS Internet Explorer 9.0

It is also recommended to have SAP GUI 7.30 installed on your local
machine. This will prevent possible problems with connections to SAP
NetWeaver BW systems that communicate through a message server.

4.1.5 Browsers

Finally, as we mentioned, there are browser requirements for running
Design Studio applications. The following browsers are supported:

� MS Internet Explorer 8

� MS Internet Explorer 9

� MS Internet Explorer 10

� Google Chrome 21.0 and higher for Windows

� Firefox 17.0 and higher for Windows

� Apple Safari 5.1 and higher for Mac

Running a Design Studio application on a mobile device is at the
moment reserved for the Apple iPad and iPhone only:

� Apple iPad with iOS 5.1.1 and higher

� Mobile Safari browser 5.1.1 and higher for iOS

Other mobile devices and platforms are not yet supported.

Installation and Configuration

98

4

4.2 Preparing for Installation

In this section you will find all the material that you require to install
Design Studio in your SAP BI environment.

4.2.1 Accessing Document Guides

SAP Service
Marketplace

Table 4.1 provides a list of the standard SAP product documentation
guides for Design Studio. To access these documents, you require an
SAP Service Marketplace account (http://service.sap.com).

Material Location

Administrator Guide: Version for SAP
BusinessObjects Business Intelligence
(BI platform)

SAP Help Portal http://help.sap.com/
boad � Installation, Configuration,

Security and Administration infor-

mation � Administrator Guide

Administrator Guide: Version for SAP
NetWeaver

SAP Help Portal http://help.sap.com/
boad � Installation, Configuration,

Security and Administration infor-

mation � Administrator Guide

Application Designer Guide SAP Help Portal http://help.sap.com/
boad � Application Help � Adminis-

trator Guide

What’s New Guide SAP Help Portal http://help.sap.com/
boad � Application Help � What’s

New

Business Intelligence Platform Admin-
istrator Guide

SAP Help Portal http://help.sap.com/
bobip40 � System Administration

and Maintenance Information �
Administrator’s Guide

SAP BusinessObjects Mobile Adminis-
trator and Report Designer’s Guide

SAP Help Portal http://help.sap.com/
bomobileios � Installation, Adminis-

tration, Customization and Report

Designing Information � Adminis-

trator’s Guide

Table 4.1 Standard SAP Product Guides

Preparing for Installation

99

4.2

4.2.2 Downloading Software Components

Table 4.2 shows the paths to the download locations for the Design Stu-
dio software components. To download these files, your SAP Service
Marketplace account needs to be linked to an SAP customer number that
owns a license for the Design Studio software.

Checking your
company’s
software

To check which SAP software your company has access to, you can go to
the SAP Software Download Center at the SAP Service Marketplace Sup-
port Portal. Go to http://service.sap.com/swdc � SAP Software Down-

load Center � Installations and Upgrades � My Company’s Applica-

tion Components � My Company’s Software. Here a complete list of
authorized software is given.

Updating from a
previous version

If you are updating from a previous version of Design Studio, you can
download the service pack update from the download locations in Table
4.3. Here you will find the download locations for future releases of ser-
vice packs and patches.

Software Component Download Location

SAP GUI for Windows 7.30 SAP Software Download Center http:/
/service.sap.com/swdc � Software

Downloads � SAP Software Down-

load Center � Installations and

Upgrades � Browse our Download

Catalog � SAP Frontend Compo-

nents � SAP GUI FOR WINDOWS �
SAP GUI FOR WINDOWS 7.30 CORE

� Installation

SAP BusinessObjects Design Studio
1.1 Design tool and BI platform
add-on

SAP Software Download Center http:/
/service.sap.com/swdc � Software

Downloads � SAP Software Down-

load Center � Installations and

Upgrades � Browse our Download

Catalog � Analytics Solutions �
SBOP DESIGN STUDIO SBOP DESIGN

STUDIO 1.1 � Installation

Table 4.2 Software Components Locations

Installation and Configuration

100

4

Software Component Download Location

SAP BusinessObjects Design Studio
1.1 BI platform add-on service pack

SAP Software Download Center http:/
/service.sap.com/patches � Software

Downloads � SAP Software Down-

load Center � Support Packages and

Patches � Browse our Download

Catalog � Analytics Solutions �
SBOP DESIGN STUDIO � SBOP

DESIGN STUDIO 1.1 Comprised Soft-

ware Component Versions � DESIGN

STUDIO BIP ADD ON 1.1 � AIX 64bit,

Linux on x86_64 64bit, Solaris on

SPARC 64bit or Windows on x64
64bit

SAP BusinessObjects Design Studio
1.1 SAP NetWeaver BW add-on ser-
vice pack

SAP Software Download Center http:/
/service.sap.com/patches � Software

Downloads � SAP Software Down-

load Center � Support Packages and

Patches � Browse our Download

Catalog � Analytics Solutions �
SBOP DESIGN STUDIO � SBOP

DESIGN STUDIO 1.1 � Comprised

Software Component Versions �
DESIGN STUDIO NW 1.1 � # OS inde-

pendent

SAP BusinessObjects Design Studio
1.1 BI platform add-on service pack

SAP Software Download Center http:/
/service.sap.com/patches � Software

Downloads � SAP Software Down-

load Center � Support Packages and

Patches � Browse our Download

Catalog � Analytics Solutions �
SBOP DESIGN STUDIO � SBOP

DESIGN STUDIO 1.1 � Comprised

Software Component Versions �
DESIGN STUDIO BIP ADD ON 1.1 �
AIX 64bit, Linux on x86_64 64bit,

Solaris on SPARC 64bit or Windows

on x64 64bit

Table 4.3 Service Pack and Patch Locations

Preparing for Installation

101

4.2

4.2.3 Helpful SAP Notes

Table 4.4 shows a number of important SAP Notes that are related to
Design Studio. To be able to access the SAP Notes, you need an SAP Ser-
vice Marketplace account. You can find SAP Notes at http://ser-
vice.sap.com/notes.

SAP Note Number SAP Note Title

1177020 SAP BusinessObjects Design Studio: Sizing Information

1760372 SAP BusinessObjects Design Studio: Release Schedule

1768160 Reduced WAN Performance of Designer Client

1773751 SAP BusinessObjects Design Studio Support

1786081 Continuous Resizing on iPad

1807142 How to Enable HTTPS/SSL Designer against BIP

1811747 TLOGO Integration for Analysis Applications (Design
Studio)

1814084 Additional Corrections: Analysis Applications/Design
Studio

1816941 TLogo Integration for Analysis Applications #2

1822009 Support for Design Studio TLOGO Object Browsing in
Roles

1843646 SBOP Design Studio 1.1: Release Note for First Delivery

1849128 Internet Explorer Version for Design Studio

1855350 Limitation: Restricted Internet Explorer in BI Platform

1866425 Analysis Applications on BIP Do Not Run on IE

1868232 SBOP Design Studio 1.1: Release Limitations Note

1869560 SAP BusinessObjects BI Support Matrix for SAP
NetWeaver BW

Table 4.4 Important SAP Notes

Installation and Configuration

102

4

4.2.4 Extracting Installation Files

Before we start with the actual installation of the various components,
we have to download and extract the Design Studio software. Follow the
steps below:

1. Make sure you have downloaded all the files from the SAP Software
Download Center (see Table 4.2 for the exact download location). As
you can see in Figure 4.2, there are three files:

� 51045997_part1.exe

� 51045997_part2.rar

� 51045997_part3.rar

Figure 4.2 Design Studio Download Files on SAP Support Portal

Preparing for Installation

103

4.2

2. Start 51045997_part1.exe to extract the files. Here you can choose a
destination folder for the extracted files (see Figure 4.3).

3. Click Install to start the extraction (see Figure 4.4).

Figure 4.3 Extraction Destination Folder

Figure 4.4 Extraction of Installation Files

Installation and Configuration

106

4

7. The destination folder location for the installation opens next (Figure
4.10). Since this directory is based on the SAP BusinessObjects BI plat-
form installation directory and it cannot be changed, the only thing
we can do here is click Next.

Figure 4.8 Installation Wizard

Figure 4.9 Software License Agreement

Installing the SAP BusinessObjects BI Platform Add-On

107

4.3

Full or partial
installation

8. In the following screen (Figure 4.11), you have the choice to perform
either a full installation or an installation including only some specific
features:

� Analysis Application Web Components

� Analysis Application Service

� Analysis Application support for Mobile Services

Table 4.5 describes these features. With the Disk Cost option, you
can calculate the required amount of disk space (Figure 4.12). Select
the features you want to install and click Next to continue.

Figure 4.10 Destination Folder

Figure 4.11 Installation Features Selection

Installation and Configuration

108

4

9. Now you are asked to enter some information on the SAP Business-
Objects BI platform you are using for this installation (Figure 4.13):

� CMS name

� CMS port number

� CMS administrator user password

After entering the right credentials, click Next to continue.

Feature Description

Analysis Application
Web Component

This feature enables the integration of Design Studio
applications in the BI Launch Pad environment, so
they can be used like any other BI document. Open-
Document links are supported. The feature also allows
the Design Studio client tool to communicate with the
SAP BusinessObjects BI platform to save and execute
Design Studio applications.

Analysis Application
Service

This feature enables the execution of Design Studio
applications. It includes the Analysis Application Ser-
vice in the Adaptive Processing Server.

Analysis Application
support for Mobile
Services

This feature includes mobile support for Design Studio
applications. It enables users to access Design Studio
applications through SAP BusinessObjects Mobile on
mobile devices such as the iPad.

Table 4.5 Installation Features

Figure 4.12 Installation Disk Costing

Installing the SAP BusinessObjects BI Platform Add-On

109

4.3

10. You are one Next click away from the installation finally starting
(Figure 4.14)! Click Next.

11. Now you can sit back, enjoy something to drink, and let the machine
do its work (Figure 4.15).

12. When the installation is finished, a post-installation instruction is
displayed (Figure 4.16). If you use multiple Web Application Service
nodes or you do not use the default Tomcat server or Web Applica-
tion Container Services (WACS), you need to perform a post-instal-
lation step using the WDeploy tool.

Figure 4.13 BI Platform Information

Figure 4.14 Start Installation Screen

Configuring the SAP BusinessObjects BI Platform

111

4.4

WDeploy13. You have successfully installed the SAP BusinessObjects BI platform
add-on for Design Studio (Figure 4.17). If you wish to launch the
WDeploy tool, just select the Automatically launch WDeploy

tool after install checkbox.

Next we will continue the installation process with the configuration of
the SAP BusinessObjects BI platform.

4.4 Configuring the SAP BusinessObjects BI
Platform

Now that the SAP BusinessObjects BI platform add-on for Design Studio
has been installed, a number of configurations can be set on the plat-
form itself. These configurations include the following:

� Initializing the Analysis Application Service

� Setting the number of client sessions

� Assigning user authorizations

� Establishing a Mobile category

Figure 4.17 Installation Finished

Installation and Configuration

112

4

After these steps are accomplished, we will show you how to set up
OLAP connections to an SAP NetWeaver BW and SAP HANA environ-
ment.

4.4.1 Initializing the Analysis Application Service

CMC To run Design Studio applications from the SAP BusinessObjects BI plat-
form, the Analysis Application Service has to be successfully initialized.
You can check this in the Central Management Console (CMC).

1. Log in to the CMC via Start � All Programs � SAP Business Intelli-

gence � SAP BusinessObjects BI Platform 4 � SAP BusinessObjects BI

platform Central Management Console. This is a shortcut to the
URL of the CMC, which is http://<host>:8080/BOE/CMC.

2. Go to Servers.

3. Check if there is an Adaptive Processing Server available under Ser-

vice Categories � Analysis Services (Figure 4.18).

Figure 4.18 Adaptive Processing Server Is Running

Configuring the SAP BusinessObjects BI Platform

113

4.4

4. If this Adaptive Processing Server is not available, you have to add
one. To do this, go to Manage � New � New Server (Figure 4.19).

5. Select Analysis Services as the service category (Figure 4.20).

6. Select the Analysis Application Service and click Next (Figure 4.21).

7. You can edit the server name if you like. Click Create to continue.

Figure 4.19 Add a New Server

Figure 4.20 Select Service Category

Installation and Configuration

114

4

8. As you can see in Figure 4.22, the Adaptive Processing Server is now
available, but it is still inactive. Right-click the Adaptive Processing
Server and select Enable Server (Figure 4.23).

Figure 4.21 Select Service

Figure 4.22 Adaptive Processing Server Created

Installation and Configuration

116

4

4.4.2 Setting the Number of Client Sessions

The maximum number of client sessions that can be active simulta-
neously can be altered for the Analysis Application Service. When the
number of active sessions reaches this number, any further attempts to
use Design Studio applications will be cancelled. An error message like
the one in Figure 4.26 will be shown.

Figure 4.25 Check Server Status

Figure 4.26 Error Due to Maximum Number of Client Sessions Reached

Configuring the SAP BusinessObjects BI Platform

117

4.4

1. Log in to the CMC and go to Servers.

2. Go to Service Categories � Analysis Services (Figure 4.18).

3. Right-click Adaptive Processing Server and choose Properties.
Scroll all the way down to the Analysis Application Service area (Fig-
ure 4.25).

4. Check the Maximum Client Sessions and change the default value if
required.

4.4.3 Assigning User Authorizations

Design Studio application designers and users need specific authoriza-
tions to be able to access and work with applications. We’ll now explain
how to create a new user group for these Design Studio users and assign
the appropriate authorizations to it:

1. First you need to create a new user group. Log in to the CMC and go
to Users and Groups.

2. Select Manage � New � New Group and enter a group name, for exam-
ple, “Design Studio Users” (see Figure 4.27). Click OK to save the new
user group.

Figure 4.27 Adding a New User Group

Installation and Configuration

118

4

Add members
to group

3. You can add existing users to this group by right-clicking the group
and selecting Add Members to Group (see Figure 4.28). Select the
users you want to add and click OK to finish.

4. Now go to the Applications menu in the CMC.

5. Right-click Design Studio Runtime and select User Security (see Fig-
ure 4.29). Now you will add the group you just created to this appli-
cation’s user security configuration.

Principals 6. Click Add Principals.

7. Select Group List and add Design Studio Users group to the
Selected Users/Groups (see Figure 4.30). Click Add and Assign

Security.

Figure 4.28 Adding Members to a User Group

Configuring the SAP BusinessObjects BI Platform

119

4.4

Figure 4.29 User Security for Design Studio Runtime Application

Figure 4.30 User Group Selection

Installation and Configuration

120

4

8. Select the View access level and add it to the Assigned Access Levels

(see Figure 4.31). Click OK to finish.

Your users have been granted the authorization rights for Design Studio.
But remember, you will also have to configure the authorizations for
other parts of the SAP BusinessObjects BI platform, like the OLAP con-
nections and the document folders you want this user group to use.

4.4.4 Creating a Mobile Category

SAP
BusinessObjects

Mobile application

Design Studio applications can be accessed through the SAP Business-
Objects Mobile application on mobile devices (see Appendix C). To
enable this feature, a Design Studio application should be filed to the
Mobile category on the SAP BusinessObjects BI platform. In this section
we will check if this category exists, and, if not, we will create it.

1. Log in to the CMC and go to Categories.

2. Check if there is a Mobile category.

3. If not, select Manage � New � Category (Figure 4.32).

4. Enter “Mobile” as the new category name and click OK (see Figure
4.33).

Figure 4.31 Access Level Selection

Installation and Configuration

124

4

6. To define an OLAP connection to a specific SAP NetWeaver BW
object, click the Connect button. Enter your SAP NetWeaver BW cre-
dentials in the popup to log on here and click OK (Figure 4.37).

7. With the Cube Browser, you can now browse to a BEx query, BEx
query view, or SAP NetWeaver BW InfoProvider. Click Select after
you make your selection (Figure 4.38).

Defining
authentication

method

8. Finally, the authentication method has to be defined. There are three
possible options here:

� Prompt

� SSO

� Pre-defined

Figure 4.37 Log on to the Data Source Popup

Figure 4.38 Cube Browser

Configuring the SAP BusinessObjects BI Platform

125

4.4

With Prompt, the users have to log on with their own user creden-
tials. They can change the client and the language in the logon screen.
With single sign-on (SSO), the users don’t have to enter their creden-
tials, but they still can change the client and language in the logon
screen. The users of an application can access the SAP NetWeaver BW
objects and data that they are authorized for by the SAP NetWeaver
BW authorization concept. With the Pre-defined option, the creden-
tials of a specific user account have to be entered. This means that the
authorization profile of this user will be used whenever this connec-
tion is used.

9. Click Save to save the new OLAP connection. The OLAP connection is
now added to the list of available connections (see Figure 4.39).

4.4.6 Creating an SAP HANA OLAP Connection

Analytic and
calculation views

Setting up an OLAP connection from the SAP BusinessObjects BI plat-
form to an SAP HANA system requires most of the same steps as in the
previous section. You can connect to an SAP HANA system as a whole,
an analytic view, or a calculation view.

1. Log in to the CMC, go to OLAP Connections, and click New Connec-

tion (Figure 4.35).

2. Enter a name and a description (optional) for the connection.

3. Choose SAP HANA as the Provider for this OLAP connection (Figure
4.40).

4. Enter the server address and port.

Figure 4.39 OLAP Connections

Installation and Configuration

126

4

5. To define this OLAP connection for a specific SAP HANA object, click
the Connect button. Enter your SAP HANA credentials in the popup
to log in and click OK.

6. Use the Cube Browser to browse to the analytic or calculation view
you want to use in this OLAP connection. Click Select to continue
(Figure 4.41).

Figure 4.40 OLAP Connection Settings for SAP HANA

Figure 4.41 Cube Browser

Configuring SAP NetWeaver Portal and SAP NetWeaver BW

129

4.5

7. A popup window appears (Figure 4.44). Here you have to enter
“iViewDependent” and click the Set button.

8. Click the Save button in the Extended Details section.

9. Next you have to grab the DESIGNSTUDIONWAPP00_0.sca file from
the installation files you downloaded earlier in Section 4.2.2. This
file is located in the DATA_UNITS � DS_NW_APP_11 folder. Transfer
it to the JSPM inbox directory on the SAP NetWeaver Portal environ-
ment. By default this is <DIR_EPS_ROOT>\in.

10. Open the Java Support Package Manager (JSPM) on the SAP
NetWeaver Portal environment.

11. Log in with an SAP NetWeaver Portal administrator account (Figure
4.45).

Figure 4.44 Modify html5.compliant Custom Value

Figure 4.45 Logging in to JSPM

Installation and Configuration

130

4

12. Select the package type New Software Components (Figure 4.46).

13. The Specify Queue screen appears. Since you only have a single soft-
ware component archive to deploy, you can click Next to continue.

14. In the Check Queue screen, click Start to begin the deployment.

15. The Completed screen appears and shows the status Deployed (Fig-
ure 4.47). The installation is now finished. Click Exit to close the
JPSM.

Now that you are finished with the installation and configuration of SAP
NetWeaver Portal for Design Studio, a new iView template for Design
Studio is available (Figure 4.48). This can be used to integrate Design
Studio applications in SAP NetWeaver Portal.

Figure 4.46 Package Type Selection in JSPM

Configuring SAP NetWeaver Portal and SAP NetWeaver BW

131

4.5

To provide Design Studio application users and developers with the cor-
rect authorizations, the authorization object S_RS_ZEN can be used.
(Figure 4.49). Table 4.6 explains the authorization fields.

Figure 4.47 Deployment Finished Successfully

Figure 4.48 Design Studio iView

Installation and Configuration

132

4

4.6 Installing the Design Studio Client Tool

In this section we will cover the installation of the Design Studio client
tool.

Figure 4.49 Authorization Object S_RS_ZEN Settings

Authorization Field Description

ACTVT (Activity) Design Studio application developers need
all activity values. Application users only
need Display (03) and Execute (16).

RSAO_OBJID (Analysis Client
Technical Name)

Technical name of the Design Studio appli-
cation. You can use an asterisk (*) to limit
the access to a specific range of applications
(for example Z_DS_HR_*).

RSAO_OBJTY (Analysis Client
Object Type)

The object type value should be 10 (Analy-

sis Application) for Design Studio applica-
tions.

RSZOWNER (Owner (Person
Responsible) for a Reporting
Component)

With this option you can limit access based
on the owner of the Design Studio applica-
tions.

Table 4.6 Authorization Object S_RS_ZEN Settings

Installation and Configuration

134

4

3. Click the Browse button to configure the target directory for the
installation files (Figure 4.52).

4. After you click the Next button, the installation will start (Figure
4.53).

5. If the installation has been executed successfully, the installer will
show a screen like the one shown in Figure 4.54. Click the Close but-
ton to exit the wizard.

Figure 4.52 Target Directory for Installation

Figure 4.53 Running the Installation

Logging In

135

4.7

4.7 Logging In

Congratulations! Design Studio is officially installed. The next step is to
run the client tool and log in for the first time.

1. Open Design Studio via Start � All Programs � SAP Business Intel-

ligence � SAP BusinessObjects Design Studio � Design Studio.
Design Studio will start (Figure 4.55).

2. The Logon to SAP BusinessObjects BI Platform screen appears (Fig-
ure 4.56). You can enter your user name and password here. Also enter
the web service URL. This URL describes the connection to the SAP
BusinessObjects BI platform and has the following format: http://
<host>:<port>/dswsbobje/services/Session.

Figure 4.54 Installation Completed Successfully

Figure 4.55 Design Studio Starting Up

Installation and Configuration

136

4

3. Select the Authentication type you want to use for your connection.
Remember that for access to SAP NetWeaver BW objects you’ll need
to use the SAP authentication method.

4. Click the OK button to log in. If you choose Skip, the Design Studio cli-
ent tool will start in local mode, with no active connectivity. You
should now see the Design Studio welcome page, as shown in Figure
4.57.

Figure 4.56 Logon to SAP BusinessObjects BI Platform

Figure 4.57 Design Studio Welcome Page

Summary

137

4.8

4.8 Summary

In this chapter we went through all the preparation steps required to
start using Design Studio to build applications. We started with an archi-
tectural overview of Design Studio, including its components, environ-
ments, and prerequisites. Then we provided some information about
what you need to do and have to prepare for installation. In the heart of
the chapter we provided step-by-step instructions for installation, con-
figuration, and your first logon.

139

Before you can start building dashboards and applications with
Design Studio, you should know your way around the develop-
ment environment. This chapter introduces the Design Studio
workspace and its elements.

5 The Integrated Development
Environment

What you see is
what you get

Design Studio allows developers to create interactive applications and
dashboards. With its integrated development environment (IDE) the
developer can create a user interface using components from a pre-
defined library, configure the properties of these components, and set
up data connections with the source systems. Finally, the application
can be published to SAP NetWeaver BW or the SAP BusinessObjects BI
platform. Design Studio is fully WYSIWYG (what you see is what you get),
which eases the development process.

Figure 5.1 shows the Design Studio development environment, includ-
ing the menus, toolbar, and Layout Editor. The views for components,
outline, properties, additional properties, error log, search results, and
script problems are also visible. This chapter will introduce you to all
these features of the Design Studio IDE and help you to get familiar with
the menus, toolbars, and views available in this tool.

The Integrated Development Environment

140

5

5.1 Menu

The menu bar can be found at the top of the Design Studio window, and
it has six dropdown menus. We will discuss each of these menus and
their items next.

5.1.1 Application

Create, open, save,
or execute

The application menu is the menu with the most options in Design Stu-
dio. Here you can create, open, save, or execute a Design Studio applica-
tion, as you can see in Figure 5.2.

New...

Create a new
application

With the New... command you can create a new Design Studio applica-
tion from scratch or start with one of the device-specific templates. The
hotkey combination for this option is (Ctrl) + (N).

Figure 5.1 Design Studio Development Environment

Menu

141

5.1

If you are logged in to an SAP BI platform, the Browse button will be
shown, which can be used to select the folder in which to store the
application. (If you started in local mode, this option is not available.)
Here you also can enter a unique technical name for the application and
give a description (see Figure 5.3). With the Target Device option you
can choose for which user platform you want to create the application:
desktop browser, iPad, or iPhone.

Figure 5.2 The Application Menu

Figure 5.3 New Application Screen

The Integrated Development Environment

142

5

You can click the Finish button to create a blank application instantly.

If you select Next, you’ll be given the option to choose from a set of pre-
defined application templates (see Figure 5.4). These templates provide
fully working interactive application layouts. If you create a new appli-
cation based on a template and execute it without editing, you can
directly check its interactive features like swiping through the pagebook
pages or clicking/tapping a button that shows or hides a popup menu.
Since there are no data sources defined and assigned to the application
components, the application won’t show any data yet.

These templates are excellent starting points when creating a new appli-
cation. They can also be used as learning examples for new Design Stu-
dio developers.

Figure 5.4 Template Selection Screen

Menu

143

5.1

Desktop, iPad,
iPhone templates

Based on the target device you chose, a set of device-specific templates is
shown. Figure 5.4 shows the template options for the iPad. The follow-
ing templates are available:

� Desktop

� Desktop template 1: simple filter bar, side panel, and tabstrip

� iPad

� iPad template 1: simple filter bar and pages

� iPad template 2: simple filter bar, pages, and script samples

� iPad template 3: simple filter bar, pages, popup emulation, and
script samples

� iPhone

� iPhone template 1: simple filter and charts using tabs

� iPhone template 2: simple filter using pagebook and panels

After you select a template and click the Finish button, the application
will be generated. Figure 5.5 shows the Layout Editor and the Outline

section for iPad template 3.

Figure 5.5 iPad Template 3

The Integrated Development Environment

144

5

Open

Open existing
applications

You can use the Open command to open existing applications, which
have been saved before. Depending on how you logged in, you can open
these applications from either an SAP BI platform or your local system.
Figure 5.6 shows this Open Application window for the SAP Business-
Objects BI platform. The hotkey for this option is (Ctrl)+(O).

Close, Close All

Close applications To close the application you are working in, you can select the Close

command or use the hotkey (Ctrl)+(W). If you made some changes to
your application, a popup will appear asking you if you want to save
these changes before closing the application.

The Close All option has the same purpose as the Close command, but
it will close all of your open applications. The hotkey for this option is
(Ctrl)+(Shift)+(W).

Delete

Delete applications The Delete command completely (!) removes your application, from
either an SAP BI platform or your local system. So make sure you use
this option with care because after you click the confirmation button
there is no way back. Probably for this very reason there is no shortcut
available for this command.

Figure 5.6 Open Application Window for SAP BusinessObjects BI Platform

The Integrated Development Environment

146

5

connection with the top-right Browse... button. The Select Connection

window (Figure 5.8) lists all connections that are defined on the SAP BI
platform listed. Click the Reload button to refresh the list.

Next you can choose a data source. If you already know the exact name
of the data source that you want to use, you can enter this in the Data

Source field. Otherwise click the Browse... button to search and select
it. For SAP NetWeaver BW systems, you can browse through Roles or
InfoAreas, or use the Search option. In the Folders tab, you can select
a data source from a hierarchical structure. This is grouped by either SAP

Figure 5.7 Add Data Source

Figure 5.8 Select Connection

The Integrated Development Environment

148

5

Show Prompts

Input variables If you added a BEx query as a data source for the application and that
BEx query contained one or more input variables, these prompts can be
displayed by choosing the Show Prompts option. Figure 5.10 shows a
BEx query with the input variable Select month on the characteristic
Cal. year / month. This same variable is shown as a prompt in the
Design Studio prompt window (Figure 5.11).

Figure 5.10 BEx Query with Input Variable

Figure 5.11 Prompt Window

Menu

149

5.1

In the prompt window, you can also edit the selected values for each
prompt by double-clicking the selected values. The selection window shown
in Figure 5.12 will appear.

Execute Locally

Execute
applications

To check what your application looks like and how its interactive fea-
tures work, you can execute it. If you choose the Execute Locally

option, the application will be run using a local web server that is
embedded in Design Studio. A new window of your default web
browser will open and load the application. With this option, there is no
need to save changes you made to the application before executing it.
The shortcut for this command is (Ctrl)+(F11).

Execute on SAP BI Platform

If you want to execute the application on the SAP BI platform you are
connected to, you can use the Execute on BI Platform option. The
application will be run in a new browser window and is executed with
the login credentials you used when logging into Design Studio. If you
haven’t saved your application before using this command, Design Stu-
dio will ask you to save. If you decline, the last saved version of the
application will be executed.

Figure 5.12 Select Prompt Value Window

The Integrated Development Environment

150

5

Reload

Refresh
components

The Reload command refreshes all components you are using in your
current Design Studio application, which can be useful. For example,
let’s say you use an SAP NetWeaver BW BEx query as a data source in
your application. Then, while you are working on your Design Studio
application, you decide to make some changes to this BEx query. After
you save the BEx query, the components that are assigned to this data
source still show the initial data output. If you select the Reload com-
mand, the components will be refreshed and the adjusted data output
(as a result of the changes in the BEx query) will be shown.

Open Repository Folder

Open Repository
Folder for local

mode

The Open Repository Folder option is only available when starting up
Design Studio in local mode. It opens Windows Explorer and goes to the
following directory:

C:\<users>\Analysis-workspace\com.sap.ip.bi.zen\repository\

Here you can find the files of your locally stored applications.

Recent Applications, Clear List of Recent Applications

Five most recent
applications

In the Recent Applications section of the Application menu, a list of
the five most recently used applications is shown. From here you can
quickly open these applications.

The Clear List of Recent Applications option erases this list.

Log Off and Restart, Exit

Change SAP
BusinessObjects BI

platform, work
locally

You can use the Log Off and Restart command if you want to log in to
another SAP BI platform or want to work locally without a connection to
an SAP BI platform. If you want to switch between a platform type—let’s
say you are working with an SAP BusinessObjects BI platform but want
to log in to an SAP NetWeaver BW system—you first have to change the
preferred startup mode in the application design preferences (see Sec-
tion 5.1.6).

Menu

151

5.1

When you select the Log Off and Restart command, Design Studio
will quit and start up again, and a logon window will appear. Now you
can log in to the platform you chose or click the Skip button to start up
in local mode.

5.1.2 Edit

The Edit menu (Figure 5.13) provides the basic productivity features
that are common in desktop applications. You can quickly undo or redo
a certain operation, or copy and paste an object.

Undo, Redo

Undo or redo editsYou can use the Undo option to reverse an action you performed. For
example, if you deleted a Button component from your application by
accident, you can easily go back to the state of your application before
you hit the Delete command. The hotkey for undo is (Ctrl)+(Z).

If you used the Undo feature but still want to use the change, you can
use Redo. The hotkey for redo is (Ctrl)+(Y).

In Design Studio you can go back and forth across multiple steps with
these options.

Cut, Copy, Paste

Some other well-known features are Cut, Copy, and Paste. When you
use the Cut option on a selected component, the component will be cut
from the application and stored in your system’s clipboard. You can use
the Paste option to paste it again in a desired location. The Copy option
does the same thing, except the original object isn’t cut.

Figure 5.13 Edit Menu

The Integrated Development Environment

152

5

You can use these commands on multiple selected components at the
same time. The hotkeys are (Ctrl)+(X) for cut, (Ctrl)+(C) for copy, and
(Ctrl)+(V) for paste.

Delete

The Delete command erases the selected component or components
from the application. The hotkey for this action is (Del).

5.1.3 Layout

The Layout menu (Figure 5.14) is all about positioning components
within a Design Studio application.

Align

Position
components

With the four Align commands, you can position two or more compo-
nents on the same left, right, top, or bottom edge. To do this, you have
to select two or more components in the Outline view (see Section
5.3.2) by using (Ctrl)-click or (Shift)-click. Next, select the Align com-
mand for the alignment that you want to execute.

Design Studio uses the outermost component as the leading place-
holder. Let’s say you have three components in your application: com-
ponent A positioned on the left of the application, component B in the
middle, and component C on the right. If you select these three compo-
nents and choose the Align Left command, components B and C will be
aligned with the left side of component A, since that component pro-

Figure 5.14 Layout Menu

Menu

153

5.1

vides the outermost position for the Align Left command. If you choose
the Align Right command, components A and B will be aligned with
the right side of component C.

Distribute

Evenly space
components

With the Distribute Horizontally and Distribute Vertically options,
a set of three or more selected components can be spaced evenly. The
two outer components remain in position, but the components lying in
between are arranged such that the distance between the center point of
each component is the same.

Maximize Component

Increase the size of
components

The Maximize Component command enlarges a component to its max-
imum size. When you use this option, the layout properties of the com-
ponent will be set as shown in Figure 5.15, with zero margin and auto
width and height.

5.1.4 Search

The Search menu (Figure 5.16) brings some very powerful developer
features to Design Studio, which will come in handy when working with
more complex applications: Search Application... and Find Refer-

ences.

Figure 5.15 Layout Properties after Maximize Component Command

Figure 5.16 Search Menu

The Integrated Development Environment

154

5

Search Application...

Search every text
string

With the Search Application... option, you can search every text string
that is used throughout the complete application—whether it is a part of
code, a component name, or a property value. The result box displays
the search results while you are typing. If you want the search to be case-
sensitive, you can select this option after clicking the Options << button.
You can also select if you want to search through the components that
are hidden.

As you can see in Figure 5.17, 11 matches are available when searching
for the string “false”. The results are grouped by component, showing
the corresponding component icon and its name. The items underneath
the component show the properties, scripts, or CSS styles in which a
match has been found.

You can double-click a component or property to select it. If you double-
click a script or a CSS style, its editor will open instantly.

Figure 5.17 Search Application

Menu

155

5.1

If you click the Keep Results button, the Search Application window
will close and the search results will appear in the Search Results view
(see Figure 5.18). You can also press (Enter) to do this.

The hotkey for Search Application... is (Ctrl)+(Shift)+(F).

Find References

Find components
and linked scripts

The Find References option lets you easily find the components and
their scripts that have a linkage to the currently selected component.
The results are displayed in the Search Results view (Figure 5.19). The
hotkey for this command is (Ctrl)+(Shift)+(F).

Just as with the Search Application... results, you can double-click a
component to select it, and double-clicking a script or a CSS style will
open its editor.

5.1.5 View

The View menu enables you to show or hide the views that are present
in Design Studio (Figure 5.20). We will discuss these views in depth
later on in this chapter, so here we will only briefly mention the key
purpose of each view.

Figure 5.18 Search Results View

Figure 5.19 Search Results View with References

The Integrated Development Environment

156

5

Components

The Components view lists all the components you can use to create a
user interface in the Layout Editor for your Design Studio application.

Outline

The Outline view lists all the data sources and components that are cur-
rently used in the Layout Editor of the Design Studio application.

Properties

The Properties view shows the properties of the Design Studio applica-
tion or one or more selected components.

Additional Properties

Unlike other components, the chart components have additional prop-
erties to further configure the looks and features of the chart. The Addi-

tional Properties view displays these settings.

Script Problems

The Script Problems view shows script errors if there are any available
in the application.

Figure 5.20 View Menu

Menu

157

5.1

Search Results

The Search Results view lists the search results from the Search Appli-

cation... command in the Search menu.

Error Log

The Error Log view lists general errors in the Design Studio application
itself.

Reset Layout

The Reset Layout command rearranges the views around the Layout
Editor. All views are shown except the Search Results view and the
Error Log.

5.1.6 Tools

The Tools menu has two options: Upload Local Application and Pref-

erences (Figure 5.21).

Upload local
application

If you created an application in the local mode and you want to use this
application on an SAP BI platform, you can use the Upload Local Appli-

cation command to upload the application’s .biapp file.

To get the application working you also have to change the data source
connections from the local mode into data source connections on the
SAP BI platform. If you use any images, you must also upload them to
the SAP BI platform and change the paths to the images.

Review and change
settings

In the Preferences menu (Figure 5.22) you can review and change the
settings for Design Studio. On the left side of the window, you can
choose between the following menus:

Figure 5.21 Tools Menu

The Integrated Development Environment

158

5

� Application Design

� Backend Connections

� Support Settings

� Scripting

� Syntax Coloring

� Templates

Since the bulk of the functionality in the Tools menu is within this Pref-

erences option, we will devote some time to it here.

Application Design

First let’s have a look at the Application Design settings.

Choose startup
mode

In the General section you can change the preferred startup mode for
Design Studio. You can choose between the following options:

Figure 5.22 Design Studio Preferences

Menu

159

5.1

� Local mode

� SAP BusinessObjects BI Platform

� SAP NetWeaver (SAP NetWeaver BW)

The Undo History Size setting determines how many changes can be
undone by using the Undo command from the Edit menu.

Define network
port

In the Embedded Web Server section, you can see that the network port
for the web server that is embedded in Design Studio to execute appli-
cations locally can be defined here. If you use the default value of 0,
Design Studio assigns a network port.

Language settingsIn the Application Preview section, you define which language settings
should be used when executing an application: Backend User Settings,
which are the language settings in the BI Launch Pad, or Web Browser,

which are the language settings that are defined in the web browser. The
selected language is used for message texts, tooltips, and determining
the correct formatting of numbers, dates, and times.

Application
recovery

The Application Recovery section gives you the option to have Design
Studio create a recovery copy of your application. To enable this, check
this option and define the time interval between each copy.

Define dimension
members

The Member Selection section allows you to define how many mem-
bers of a dimension are shown when using the Script Editor. Figure 5.23
shows the Script Editor creating a script on a button component.

Figure 5.23 Script Editor Member Selection: Fewer than 20 Members

The Integrated Development Environment

160

5

As you can see, the Content Assistance feature (hotkey (Ctrl)+(Space))
has been used to show a list of members for the 0EMPLOYEE dimen-
sion. Since this list consists of fewer than 20 members, it is shown here.
You can change this value by editing the Maximum number of members

to fetch from backend in Content Assistance number setting.

In the example in Figure 5.24, more than 20 members for the
0CALMONTH dimension are available. In this case the Select Member...
option is shown instead of a list of members. When you select this
option, the Select Member window appears, giving a list of a maximum
of 1,000 members, as shown in Figure 5.25. You can adjust this value by
editing the Maximum number of members to fetch from backend in
dialog setting.

Display warnings Finally, you can select the Display warnings for manually entered

invalid values setting to let Design Studio display warnings in the
Script Editor when nonexistent values are entered.

Prompt values If your application uses a BEx query with input variables as a data
source, you can use the Show Prompts command from the Application

menu to select the prompt values. If the Use cached prompt values for

local execution option is selected in the Prompt Handling section of
the Application Design screen, the application will use the prompt val-
ues that are already set in Design Studio when executing the application
locally.

Figure 5.24 Script Editor Member Selection: More than 20 Members

Menu

161

5.1

You can clear these prompt values with the Clear Prompt Value

Cache... button. The dialog screen gives you the option to choose the
applications for which the cache should be emptied (Figure 5.26).

The Paths section is where you set the path to the application templates
folder. These are templates you can choose from when creating a new
application.

This brings us to the end of the options on the Application Design

screen.

Figure 5.25 Select Member Window

Figure 5.26 Clear Prompt Value Cache

The Integrated Development Environment

162

5

Backend Connections

Now refer back to Figure 5.22. Click on Backend Connections under
Application Design. This section displays the available Backend Con-

nections, which you can use to create data sources. The contents of this
section can differ depending on the startup mode you used. In Figure
5.27 the backend connections are shown when connecting to an SAP
BusinessObjects BI platform. The connections can be edited in the SAP
BusinessObjects BI platform Central Management Console (CMC).

Figure 5.28 shows the connections that are defined in SAP Logon (SAP
NetWeaver BW) and the ODBC Data Source Administrator (SAP HANA).
You can go to these tools by clicking the icon with the gear wheels in the
upper right.

Figure 5.27 Backend Connections on BI Platform

Figure 5.28 Backend Connections in SAP Logon and ODBC Data Source Administrator

The Integrated Development Environment

164

5

Syntax Coloring

With Syntax Coloring (Figure 5.30), you can adjust the styling of
scripts to make the code easier to read.

Templates

Templates for scripts (Figure 5.31) can be used in the Script Editor to
generate a predefined code template, as shown in Figure 5.32.

Figure 5.30 Syntax Coloring

Figure 5.31 Scripting Templates

Menu

165

5.1

5.1.7 Help

The Help menu (Figure 5.33) is the final item in the menu bar. Here sev-
eral support options for Design Studio are provided, as well as some
more detailed information about your current Design Studio installation.

Welcome

The Welcome option shows the welcome page that you also see when
you start Design Studio (Figure 5.34). It consists of four sections:

� Getting Started
This section provides a number of links to introductory video tutori-
als. The More... link redirects to SAP’s official product tutorial web-
site for Design Studio.

� Create New
The button in this section closes the welcome page and creates a new
Design Studio application.

Figure 5.32 Template in Script Editor

Figure 5.33 Help Menu

The Integrated Development Environment

166

5

� Recently-Used Analysis Applications
The five most recently used Design Studio applications are listed here.

� Useful Links
Some links to the SAP website are listed here.

Disable welcome
page

As you might have concluded for yourself already, this welcome page
doesn’t bring any real added value to Design Studio, since most of its
features are also available elsewhere. Luckily, in the bottom left corner
you can deselect the box to disable showing this page at each startup of
Design Studio.

Help Contents

The Help Contents option provides the default guide for Design Studio
created by SAP.

Support

If you run into problems with Design Studio, the Support menu offers
ways to collect information that can be shared with the SAP support

Figure 5.34 Welcome Page

Toolbar

167

5.2

department. When you select the Collect Support Information...
option, a ZIP file will be created, which includes several configuration
settings and logs.

With Download Application... you can download the complete Design
Studio application from the BI server to your local environment.

About...

You can use the About... option to check the installation and versioning
details of your Design Studio setup (Figure 5.35).

5.2 Toolbar

The toolbar is positioned just below the menu bar. It includes a lot of the
commands that are also available in the menus, but from the toolbar
they are just a bit easier and faster to access (Figure 5.36).

You can use a toolbar button by simply clicking it. Just as with the com-
mands from the menus, depending on the component or components
you have currently selected, some of the buttons are enabled and some

Figure 5.35 About Design Studio Window

Figure 5.36 Design Studio Toolbar

The Integrated Development Environment

168

5

are disabled. For example, the alignment buttons are only active when
two or more components are selected.

Seven command
groups

The toolbar is divided into seven command groups. Each new group
starts with a vertical line of dots. You can rearrange these command
groups by selecting the vertical line of dots and dragging it to the desired
position on the toolbar.

Send to Mobile
Device

The only command that is listed in the toolbar but is not available in one
of the menus is the Send to Mobile Device (using QR Code

®
) com-

mand (see Figure 5.37). This function generates a QR code (quick
response code) of the URL of the Design Studio application (Figure
5.38). This QR code can be read by a QR code scanner application on a
mobile device. Free applications with this functionality are widely avail-
able in app stores. After scanning the QR code, you can run the applica-
tion URL in a browser on the mobile device to execute the Design Studio
application.

Table 5.1 lists all of the toolbar buttons with a short description of their
commands.

Figure 5.37 Send to Mobile Device Toolbar Command

Figure 5.38 Generated QR Code

The Integrated Development Environment

170

5

When you make changes to your application, an asterisk (*) is placed in
front of the technical name that is shown on top of the Layout Editor.
This indicates that the current version of the application hasn’t been
saved yet.

The Layout Editor is affected by what views you select in the View

menu, which we briefly introduced earlier (Section 5.1.5). Now, we’ll go
into a lot more detail about what each of these views means for you.

5.3.1 Components View

The Components view (Figure 5.39) houses all the visual building
blocks to create an application, including an interactive user interface.
To add a component to an application, just drag and drop the compo-
nent from the Components view into the Layout Editor.

Analytic, basic,
and container

components

The components are grouped in three categories:

� Analytic components
These components present data through charts and tables and deliver
standard filtering options.

Figure 5.39 Components View

Layout Editor

171

5.3

� Basic components
This category consists of components to create more advanced filters
and interactivity, as well as components to display images and texts.

� Container components
These components are used to define the framework of an application
by grouping and structuring the other components.

5.3.2 Outline View

Structured
overview of
components and
data sources

The Outline view provides a structured overview of all the components
and data sources that are used in the application. As shown in Figure
5.40, there are two folders under the top application level: Data

Sources and Layout. As the name indicates, all data sources are dis-
played in the Data Sources folder. Components are shown in the Lay-

out folder. As you can see, this happens in a structured way. In the
example of Figure 5.40, we are using a Tabstrip component with two
tabs. Since this is a container component, other components can be
placed within it. Tab 1 contains a Crosstab, Button, and Filter Panel

component. Tab 2 contains a Chart and Filter Panel component.

Select and
rearrange items

Not only does the Outline view give you a very clear overview of the
application and its components and data sources, but it can also be used
to select and rearrange these items. With (Ctrl)-click you can select mul-
tiple items, and with (Shift)-click you can select a range of items. With
the search box on top of the Outline view, you can quickly look for an
item. The search results will appear as soon as you start typing.

Figure 5.40 Outline View

The Integrated Development Environment

172

5

When you right-click an item, its context menu is shown, which pro-
vides a number of quick commands. These commands differ according
to the type of item that is selected and the number of items that are
selected. The options for Copy, Paste, Rename, Delete, and Find Refer-

ences are available for all items.

For the data source items here, the options Edit Initial View and Reset

Initial View are also available (Figure 5.41). The Initial view of a data
source represents the formatting of the data source. The Reset Initial

View command sets the output of a data source back to its original state
by eliminating all the changes you made using the Edit Initial View

option.

Initial view You can change the Initial view of a data source with the Edit Initial

View option, which brings you to the screen shown in Figure 5.42. This
screen can be divided into the following three areas:

� The available dimensions and measures are placed on the left, includ-
ing their attributes and hierarchies (when available). To add an
attribute, right-click the attribute and select Add from the context
menu. An attribute is only visible in the result set when its dimension
is also added to the columns or rows. If a dimension has a hierarchy,
you can go to the context menu of this hierarchy to activate and deac-
tivate it, and you can set its expansion level.

� The middle column is the area to place and arrange the dimensions
and measures that should be shown in the columns and rows of the
result set. In the Background Filter section, measures can be added
that are being filtered but do not appear in the result set.

� On the right side of the window a Live Preview of the result set is
given with the number of data cells. In the upper-right corner a Pause

Figure 5.41 Context Menu for Data Sources

Layout Editor

173

5.3

Refresh checkbox is available. Selecting this option suspends the
automatic refreshing of the result set. This comes in handy when you
need to make a lot of alterations to the Initial view and there is no
need for an updated preview of the result set after each change. When
all changes are done, deselect the checkbox again to refresh the pre-
view of the result set.

For each measure, you can change the following by right-clicking the
measure:

� Number of decimal places

� The scaling factor

� How the totals are calculated

� The sorting order

For each dimension, you can change the following by right-clicking the
dimension:

� Additional attributes to be displayed

� The active hierarchy and its initial expansion level

Figure 5.42 Edit Initial View of Data Source

The Integrated Development Environment

174

5

� A member to be filtered

� The filter by input string

� Member presentation (key, text, key + text, etc.)

� The totals display mode

In the context menu of a measure, you can change the number of deci-
mal places, the scaling factor, how totals should be calculated (sum,
average, median, etc.), and whether the measure should be sorted in
ascending or descending order.

In the context menu of a dimension (Figure 5.44), you can change the
display settings. Use the Member Display option to define whether the
text and/or key value of a dimension should be shown, its order, and
which text type should be used. You can also choose Filter Members,
which allows you to add filters from a list of values. If you want to make
a complex filter, you can choose the option Filter by Inputstring. An
editor will open, and you will be able to type a filter expression yourself.
For example, if you want the product numbers 0001 through 0005,
product number 0008, and all above 0010 in your selection, you can
type this filter into the editor: “[0001;0005],0008,[>0010]”. To remove
all filters, use Select All Members.

Figure 5.43 Context Menu of a Measure

Layout Editor

175

5.3

The Totals Display option determines if a totals column or row should
be shown for the dimension. Here you can choose among Show Totals,
Hide Totals, and Hide Totals If Only One Member.

Finally, the Member Access Mode defines whether all available mem-
bers in the master data should be shown or only those members for
which values can be posted.

Hide a componentThe context menu of a component has the option to hide a component
(Figure 5.45). This is a very important feature for developers. Applica-
tions that consist of a large number of components, which are also
nested within each other and form multiple interface layers, quickly
lead to an overcrowded Layout Editor. This might make it hard for a
developer to oversee the application. With the Hide feature, the selected
component or components can be hidden from the Layout Editor. When
a component is hidden, the Hide option is replaced with the Show

option, which can be used to reveal the component again. The Hide

option has no effect on the application when executing it.

Align and
distribute

When you select two or more components, the Arrange command is
added to the context menu, providing the commands for alignment.

Figure 5.44 Context Menu of a Dimension

Figure 5.45 Context Menu for Components

The Integrated Development Environment

176

5

When you select three or more components, the Distribute commands
are available (see Figure 5.46).

From the context menus of the Data Sources folder and Layout folder,
new items can be added to the application and copied items can be
pasted. In addition, the context menu for the Layout folder has the
option Show All Hidden Components, to undo all the Hide settings on
the hidden components in one click.

5.3.3 Properties View

The Properties view contains all the settings that can be edited for a
selected item. This can be a data source, a component, or the application
itself. When multiple items are selected, only those properties that are
common to all selected items are shown.

In the remainder of this section, we will give a short overview of the
properties that are available in the various Properties views in Design
Studio. In Chapter 7 we will discuss in detail the item-specific properties
for all available components.

The Properties view of a data source consists of two sections (Figure
5.47):

� General
The data source name.

� Data Binding
Loading settings and source information about the data source.

Figure 5.46 Arrange Commands in the Context Menu for Components

Layout Editor

177

5.3

The Properties view of a component can consist—depending on the
type of selected component—of the following sections (Figure 5.48):

� General
Name and type of component, plus a visibility setting.

� Data Binding
The data source assigned for this component.

� Optimization for Low Data Volume

Settings to improve usability.

Figure 5.47 Properties View of the Data Source

Figure 5.48 Properties View of the Crosstab Component

The Integrated Development Environment

178

5

� Display
Formatting and display features.

� Events
Options to create interactivity on this component.

� Layout
Size and positioning options.

Finally, the Properties view for the application consists of the following
sections (Figure 5.49):

� General
Name, location, and application file information.

� Display
Formatting and display options.

� Prompts
Setting to display prompts when starting the application.

� Scripting
Definition of global variables.

� Events
Scripts that have to run when the application starts.

Figure 5.49 Properties View of the Application

Layout Editor

179

5.3

5.3.4 Additional Properties View

The Additional Properties view is an extension of the Properties view
for charts. This is the only type of component for which the Additional

Properties view has a function.

Customizing the
chart framework

In the Chart Area pane (Figure 5.50), you can define the appearance of
the chart framework. With the use of several checkboxes you can deter-
mine whether a chart should be displayed with an animation, if tooltips
should be active, if a legend has to be shown, and whether the axis labels
and values have to be visible. This is also where you can set the back-
ground color of the chart area. If you select Solid Fill, the color that is
defined in the application theme will be used. Finally, there is an option
to either use or override the display options for dimensions as defined
in the Initial view of the data source that is assigned to this chart.

The Data Series panel (Figure 5.51) provides some settings to adjust the
presentation of the data. In the Displayed Series Format section, you
can edit the color of each series by clicking the colored squares.

Figure 5.50 Additional Properties Chart Area

The Integrated Development Environment

180

5

The combination charts have an additional Displayed Measures section.
Here you can set a series to be displayed as a line or a bar/column.

Waterfall charts Waterfall charts have an additional Data Series Sequence section. With
this feature, you can switch between the options to display a dimen-
sion’s value as a cumulative value (floating in the waterfall) or as a total
value (starting at the x-axis).

5.3.5 Error Log View

In the Error Log view, all Design Studio system and application errors
are displayed (Figure 5.52). In addition, messages are displayed when
script validation methods are used in scripts. If you double-click an
error, more details about the event are given in a popup window.

Figure 5.51 Additional Properties Data Series

Figure 5.52 Error Log View

Summary

181

5.4

5.3.6 Script Problems View

The Script Problems view displays script errors encountered during
script validation (Figure 5.53). This view is only updated when you open
and save an application, so a problem can remain in the Script Prob-

lems view after it has been fixed. Double-clicking a problem opens the
script editor of the component concerned.

5.4 Summary

In this chapter we took a detailed look at the Design Studio application,
with the goal of getting more familiar with its integrated development
environment. We discussed all the available menu options in detail,
from creating a new Design Studio application to checking the Design
Studio software version in the About... menu. We also learned that
some of the most important commands are incorporated in the toolbar.

In the remainder of the chapter we went through the Layout Editor and
all the views in Design Studio: Components, Outline, Properties,
Additional Properties, Error Log, Search Results, and Script Prob-

lems.

In the next chapter we will put this knowledge to use by creating our
first simple Design Studio application.

Figure 5.53 Script Problems View

183

Now that you’ve been introduced to the Design Studio develop-
ment environment, it is time to get your hands dirty. In this
chapter we will walk you through the basic steps in building
a Design Studio application.

6 The Application Design Process

At this point you know what Design Studio is, what its abilities are, and
how it compares to similar tools in the SAP business intelligence portfo-
lio. You have also been introduced to the Design Studio development
environment. The next step is to learn about the general process of
building a Design Studio application. This chapter serves as a tutorial to
guide you through this process. Keep in mind that this is just a high-level
overview to help you understand the process of building an applica-
tion—all the specific details about the relevant components, properties,
and methods will come in the next chapters.

Human resources
application

Before we can build anything, we have to know what information the
application should show and in what way it will be used. In this example
scenario, we will build an application for a human resources manager.
The manager wants to see the monthly trends for the headcount and the
full-time equivalent (FTE) amount for each department. He also wants to
see a list of employees for each department. This list should show the
employee number, name, department, gender, nationality, and age for
each employee. Finally, the application has to be accessible and usable
on a mobile device.

The application in our scenario consists of three main sections:

� Monthly trend visualization for the two measures

� Employee list

� Filter for department selection

The Application Design Process

184

6

In this scenario we will use a Tabstrip component to format the two
visualizations. The first tab will contain the monthly trend visualization,
and the second tab will show the employee list.

Application
components

To visualize the monthly trend for the two measures—headcount and
FTE amount—we are going to use a Chart component of the Line type.
To make this example a bit more interesting, we will add an option to
switch between these two measures, so the Chart will show the trend of
only one measure at a time. We can use a Radio Button Group compo-
nent to achieve this. The list of employees, including all of the employee
dimensions and measures, can be displayed with a Crosstab compo-
nent. Finally, we need a filter to select the department for which the
data should be shown. We will use a Dropdown Box component to
achieve this. The filter should set the selection for both the Chart and
the Crosstab. The Dropdown Box component has to be visible all the
time, so we won’t add this component to the Tabstrip component.

Now that you know the requirements, we’ll use the rest of the chapter
to walk you through the major development steps:

� Setting up the user interface and visualizations

� Adding the data

� Making it interactive

� Formatting and fine-tuning it

� Executing the application

Now let’s build an application!

6.1 Setting Up the User Interface and Visualizations

In this first step of building an application, we’ll start by setting up the
components. You can do this by following the steps below:

1. Open Design Studio and log in to your SAP BI platform.

Create a new
application

2. Select Application � New... to create a new application.

3. Enter a name and description for your application (Figure 6.1). Then
select iPad as a Target Device, since you want to use this application
on a mobile device. Click Next to continue.

Setting Up the User Interface and Visualizations

185

6.1

4. You are going to create an application from scratch, so don’t use a
template. Choose the Blank option and click the Finish button (Fig-
ure 6.2).

5. A clean Design Studio Layout Editor appears. Now it is time to add
some components to create the user interface. First you want to add
the Tabstrip component. Select the Tabstrip component from the
Container Components section in the Components view. Drag it to

Figure 6.1 Create a New Application

Figure 6.2 Template Selection

The Application Design Process

186

6

the Layout Editor and release the mouse button to drop this compo-
nent. The component will appear in the Layout Editor but also in the
Outline view in the bottom-left corner of the screen (Figure 6.3).

6. This component should be as large as the whole application. To do
this you can use the Maximize Component feature. Select the Tab-

strip component in the Layout Editor or in the Outline view and
select Layout � Maximize Component from the menu bar. If you are
familiar with the icons in the toolbar, you can use the Maximize

Selected Component icon.

7. The Tabstrip component has two tabs by default. Select Tab 1 by
clicking it in the Layout Editor or select it from the Outline view.

8. Rename the tab label by entering “KPI trends” in the Display � Text

field in the Properties view. You can also do this from the Outline

view by right-clicking the tab and choosing the Rename option.

9. Rename the other tab label “employee list”.

Figure 6.3 Tabstrip Component Added to the Layout Editor

Setting Up the User Interface and Visualizations

187

6.1

Select components10. Select a Chart component from the Analytic Components section
in the Components view and drag it into the first tab of the Tabstrip

component.

11. In the Preferences view of this Chart component, select Display �
Chart Type to Line. You will notice that nothing happens. This is
because you didn’t assign a data source to this component yet. We
will further format the Chart component later on in this chapter.

12. To the first tab, add a Radio Button Group component from the
Basic Components section in the Components view. Your screen
should now look like Figure 6.4.

13. Select the second tab and add a Crosstab component to it. You can
find this component in the Analytic Components section of the
Components view. Make the Crosstab component as big as the tab
by using the Maximize Component option.

Figure 6.4 Tabstrip Component with Two Child Components

The Application Design Process

188

6

14. Next you need to drag a Dropdown Box component into the layout
editor. You will use this component to select the department for
which the data has to be shown. The Dropdown Box component is
located in the Basic Components section of the Components view.
Make sure that the Dropdown Box component is not placed within
one of the two tabs. Remember, you want this dropdown box to be
visible all the time, independent of which tab is selected. It should
therefore be positioned on the same level as the Tabstrip compo-
nent. If you are not sure about this, check the Outline view.

In Figure 6.5 you can clearly see that the TABSTRIP_1 component con-
tains two tabs (TAB_1 and TAB_2). TAB_1 contains the items CHART_

1 and RADIOBUTTONGROUP_1. TAB_2 contains CROSSTAB_1. The
item DROPDOWN_1 is positioned on the same level as TABSTRIP_1.

If your Outline view looks like the one in Figure 6.5, you are ready to
add some data to the application!

6.2 Adding the Data

Bring in data
sources

To bring data into the application, you need to add some data sources. In
this example, we’ll use a BEx query as the data source. This BEx query
contains six dimensions and three measures (Figure 6.6). The measures
are located in the Columns, and the Cal. year / month dimension is
placed in the Rows. The other dimensions are in the Free Characteris-

tics section. The BEx query provides data for a 12-month period.

Figure 6.5 Outline View with Multiple Component Levels

Adding the Data

189

6.2

Follow the steps below:

1. In Design Studio, select Application � Add Data Source... or right-
click the Data Sources folder in the Outline view to add a new data
source. Connect to the SAP BI platform by clicking the first Browse...

button.

Connect to a
BEx query

2. Enter the technical name of the BEx query in the Data Source field.
You can also use the second Browse... button to search for the query
(Figure 6.7). The data source gets the alias name DS_1 by default, and
you can leave it that way.

3. Now drag and drop this data source from the Data Sources folder in
the Outline view onto the Chart component in the KPI Trends tab.
As soon as you release the mouse, the Chart component will be
assigned to the data source. You can also achieve this result from the
Data Binding option in the Properties view of the Chart compo-
nent.

Figure 6.6 BEx Query Setup

Adding the Data

191

6.2

8. Add the dimensions Employee, Department, Job, Nationality, and
Gender to the Rows area.

9. The Initial View should now look like Figure 6.9. Click the OK button
to save these changes.

Figure 6.8 Initial View of Data Source DS_2

Figure 6.9 Rearranged Initial View of Data Source DS_2

The Application Design Process

192

6

10. Assign data source DS_2 to the Crosstab in the Employee List tab.
As you can see, the Crosstab is now populated with a list of
employee attributes (Figure 6.10).

6.3 Making It Interactive

You now have the components all set up in the Layout Editor, and the
application is already connected with a BEx query, delivering the data
you want to show. In this section, we will use some scripts to add inter-
activity to the application and to set up the filters.

Scripting Don’t worry if you are a bit overwhelmed by the coding we’re going to
discuss here. Later in the book, we will explore scripting in a far more
detailed way and will actually explain what is happening. For now,
we’re just giving you the big picture. The following things need to hap-
pen:

Figure 6.10 Crosstab Populated with Data

Making It Interactive

193

6.3

� When the application first starts up, the labels of the Dropdown Box

component have to be populated with the values for the departments.

� You have to set the initially selected label of the Dropdown Box com-
ponent, since you want to see the data for only one department at a
time.

� Not only do you need to show the initially selected label, but you also
have to make sure both data sources are actually filtered for this initial
value on the department dimension.

� When a department is selected from the Dropdown Box component,
the Chart and Crosstab components should show the values for that
department.

� The Radio Button Group component must determine which mea-
sure should be presented in the Chart component. Only one of the
two measures should be shown when the application starts.

Now let’s code!

1. Select your application from the Outline view. This is the top level.

2. In the Properties view, all the way down, click the Events � On Star-

tup button to edit the script. This script will be executed when the
application first starts up.

3. To populate the Dropdown Box component with labels from the
Department dimension, use the following script:

DROPDOWN_1.setItems(DS_1.getMemberList("0PERS_
AREA", MemberPresentation.EXTERNAL_KEY, MemberDisplay.KEY_
TEXT, 50));

4. In this example, use department 1300 (Frankfurt) as the initially
shown department. First make sure the Dropdown Box component
shows this value initially. Add the following script on a line beneath
the script from the previous step:

DROPDOWN_1.setSelectedValue("1300");

5. The next step is to filter both data sources so they will give only the
data for department 1300 (Frankfurt) when the application starts up.

On a new line write this script:

DS_1.setFilterExt("0PERS_AREA", "1300");
DS_2.setFilterExt("0PERS_AREA", "1300");

The Application Design Process

194

6

6. The code for the On Startup event is now finished (Figure 6.11). Click
the OK button.

7. Now head over to the Dropdown Box component. Select it and in its
Preferences view choose Events � On Select.

8. Add the following code to execute a filter on both data sources, with
a value that is selected from the Dropdown Box labels.

DS_1.setFilterExt("0PERS_AREA", DROPDOWN_1.getSelected-
Value());
DS_2.setFilterExt("0PERS_AREA", DROPDOWN_1.getSelected-
Value());

9. Click OK to close the Script Editor (Figure 6.12).

Figure 6.11 On Startup Event Script

Figure 6.12 Dropdown Box On Select Event Script

Making It Interactive

195

6.3

10. Finally, you have to set up the Radio Button Group component.
Select the component and navigate in its Properties view to Display �
Items.

11. Here you will add the two selection values for the measures FTE and
headcount. In the Text (optional) fields enter “FTE” and “Head-
count” (Figure 6.13).

12. You need to get the values for the Value fields from the BEx query
you used earlier as a data source for the application. Open BEx Query
Designer and open the BEx query.

13. Select the key figure for FTE from the Rows section and go to the
Extended Tab in the Properties view. Here you can find the enter-
prise ID of this key figure (Figure 6.14). You need this to create the
filter in the Radio Button Group component. Copy the enterprise
ID and paste it in the Value field for FTE in the Edit Items window
in Design Studio.

Figure 6.13 Edit Display Items for the Radio Button Group Component

Figure 6.14 BEx Query Designer Properties for Key Figure FTE

The Application Design Process

196

6

14. Repeat these steps for the Headcount key figure and click OK to
close the Edit Items window.

15. Now go to Events � On Select to open the Script Editor.

16. Enter the following code, where <Enterprise ID KF> should be
changed with the enterprise ID of the key figures structure in your
BEx query (Figure 6.15). You can find this the same way you got the
enterprise IDs for the two key figures, only now you have to select
the Key Figures structure instead. You can also press (Ctrl)+(Space)
while typing the code to select the dimension from the context
menu.

DS_1.setFilterExt("<Enterprise
ID KF>", RADIOBUTTONGROUP_1.getSelectedValue());

17. Close the Script Editor by clicking OK.

18. If you were to execute the application at this point, three lines would
still be shown in the Chart. This is because the event script you just
created for the Radio Button Group is only executed when a selec-
tion is made. Therefore, you need to add another line of code to the
On Startup event of the Design Studio application to set an initial fil-
ter on the measures. Select the application from the Outline view.

19. In the Properties view go to Events � On Startup.

20. Add the next piece of code. Again, you have to change <Enterprise
ID KF> to the enterprise ID of the Key Figure structure and <Enter-
prise ID FTE> in the enterprise ID for the FTE key figure.

DS_1.setFilterExt("<Enterprise ID KF>", "<Enterprise ID FTE>");

Figure 6.15 Radio Button Group on the Select Event Script

Formatting and Fine-Tuning

197

6.4

21. The complete Script Editor for the On Startup event should now
look like Figure 6.16. Click OK.

Congratulations: Your Design Studio application is now fully opera-
tional! But before you can start using it, you should take some time to
focus on the application’s appearance to create a superb user experience.

6.4 Formatting and Fine-Tuning

Until this point of the example scenario, we didn’t take a lot of time to
have you format the application in the right way. You just added the
building blocks you needed and made sure the application worked and
the components did what they had to do.

User experienceIf an application meets all its functional requirements but is designed
such that the user doesn’t understand what he sees or how things work,
or it just doesn’t look nice, the application quickly loses its value. It may
frustrate the user and eventually lead to a situation in which the applica-
tion won’t be used at all.

Customize an
application

Luckily, Design Studio provides a lot of options to customize and format
the looks of an application. In this section we will go through a few of
the features that would apply to our example application. Follow the
steps below:

Figure 6.16 On Startup Event Script

The Application Design Process

198

6

1. Place the Dropdown Box component on the same height position as
the Tabstrip component. Select both components from the Outline

view by (Ctrl)-clicking them.

2. From the Layout menu select the Align Top option. The Dropdown

box is now moved to the top of the application.

3. Now you want this Dropdown Box component to always keep the
same margin from the right side of the application. Select the Drop-

down Box component.

4. In the Properties view set Layout � Right Margin to “20” (Figure
6.17).

5. Select the Chart component. In the Properties view set Layout �

Height to “450”.

6. Set Layout � Left Margin to “30” and set the same value for Bottom

Margin and Right Margin. You’ll see that the Width is set to Auto

(Figure 6.18). The Chart component’s width will now automatically
resize when the user increases or decreases the application size.

7. Select the Radio Button Group component. In the Properties view
set Layout � Width to “200”.

8. Set Display � Columns to “2” (Figure 6.19).

9. Now drag the Radio Button Group component to a position just
above the Chart component.

Figure 6.17 Dropdown Box Component Properties View Layout Section

Figure 6.18 Chart Component Properties View Layout Section

Formatting and Fine-Tuning

199

6.4

10. Once again, go to the Properties view and set Layout � Left Margin

to “80” (Figure 6.19).

11. Since you already maximized the size of the Crosstab component in
the Employee List tab of the application, you don’t have to edit the
Layout settings for that component. Now that all the components
are in place, you can edit the appearance of the Chart. Select the
Chart component.

12. Open the Additional Properties view from the View menu.

13. In the Additional Properties view, go to the Legend section and
deselect the Display Legend checkbox (Figure 6.20). Since you
already have a Radio Button Group component that indicates
which measure the Chart is displaying, you don’t need an additional
legend.

Figure 6.19 Properties View of the Radio Button Group Component

Figure 6.20 Legend Section in the Additional Properties View

The Application Design Process

200

6

14. Click the Chart Area button, which is located above the Additional

Properties view, and select Data Series.

15. Click the colored square and pick a color you like from the palette
(Figure 6.21).

The application you created is now nicely formatted and looks like Fig-
ure 6.22.

Figure 6.21 Data Series Pane in the Additional Properties View

Figure 6.22 Layout Editor after Formatting

Executing the Application

201

6.5

6.5 Executing the Application

Test runIt is time to check out your first application in Design Studio! Although
we waited until the end to walk you through this process, keep in mind
that you don’t have to wait until the application is completely finished
to do some test runs. During the development process you constantly
want to see how the application behaves and how the changes you make
affect the application.

To execute the application, follow the steps below:

1. Select the Execute locally option from the Application menu to
check the application in a browser window. The result is shown in
Figure 6.23 and Figure 6.24.

Figure 6.23 Application Running in a Browser (KPI Trends Tab)

The Application Design Process

202

6

2. Switch tabs, set a filter on another division, and switch between the
two chart measures.

3. Check the application on your mobile device by selecting the Send to

Mobile Device (using QR Code®) command in the toolbar.

6.6 Summary

In this chapter we went through a step-by-step tutorial to build a simple
application with Design Studio. We used a Chart component and a
Crosstab component to visualize and display data from a BEx query
data source. To set up the overall layout of the application, we used a

Figure 6.24 Application Running in a Browser (Employee List Tab)

Summary

203

6.6

Tabstrip component, which allows the user to switch between the
Chart and the Crosstab. With a Dropdown Box component, a Radio

Button Group, and some associated event scripts, we created the inter-
active elements in this application to filter the data and select the mea-
sures to be presented in the chart. Finally, we executed the application
and checked its functionality.

205

The components and properties in Design Studio are your basic
tools for enhancing your applications. In this chapter, we’ll
introduce you to them.

7 Components and Properties

In this chapter, we will look at all the building blocks—in other words,
the components and their properties—of Design Studio. We start by
talking about the properties of the Application component, then move
on to the properties of the Data Source Alias component. In the heart
of the chapter, we discuss the properties of all the visual components of
Design Studio. Finally, we end the chapter with some tips and tricks
about working with all these pieces and parts.

7.1 Application Component Properties

Common
properties
Main component

The Application component (Figure 7.1) is the main component in
Design Studio, as it is the application itself. It is the top-level node in the
Outline view, and its Properties view contains settings that cover the
whole application. Variables are maintained in this component, and a
script can be added that will start up at the start of the application. Fur-
thermore, you can insert a central CSS file that will allow you to have a
single source of layout classes that you can use for every component
within the application.

Components and Properties

206

7

Table 7.1 shows the changeable properties of the Application compo-
nent.

Figure 7.1 Application Component Properties

Properties Usage

Description The description of the application. You set this
when you create a new application, but it can be
changed at design time.

Theme Specifies the theme of the application. The
theme is a set of layout choices that apply to all
the components used in the application. SAP
recommends using the SAP Platinum theme for
desktop applications and the SAP Mobile theme
for iPad and iPhone applications.

Custom CSS You can upload a CSS file to the root folder of
the application (local) or the SAP BI platform. In
the Custom CSS property, you can point to this
CSS file. In this CSS file, CSS classes are defined
that can be used by other components that have
a CSS class property.

Table 7.1 Changeable Properties of the Application Component

Application Component Properties

207

7.1

Position of Message

Button

Location of the button in a message. The button
can be located on the top left, top right, bottom
left, or bottom right of the application screen.

The message button informs the user about
information, warnings, and errors at runtime of
the application.

Position of Message

Window

Location of a message on the application during
runtime. This message can be positioned on the
top left, top right, bottom left, or bottom right
of the application.

Displayed Message Types With this setting you can set the kind of mes-
sages that will show up at runtime of the appli-
cation. The available message types are:

� None: No messages will be shown.

� Errors: Only errors will be shown.

� Warnings: Warnings and errors will be
shown.

� All: All information messages will be shown.

Force Prompts on Startup When set to True, this setting forces the applica-
tion to prompt for new variable values at the
start of the application when SAP NetWeaver
BW or SAP HANA variables are used in the
application.

Global Script Variables Here you can define global variables that are
available in all the scripts in each component.
You can also define the variable as a URL param-
eter so parameter values can be read from other
applications.

On Startup Script code that will be run when the application
starts. Editing this property will start the Script
Editor. In the startup phase of the application,
you typically insert code to work with external
parameters or use data sources to populate the
items of basic components.

Properties Usage

Table 7.1 Changeable Properties of the Application Component (Cont.)

Components and Properties

208

7

There are a number of cases when you might work with the properties
of the Application component. These properties have a bigger impact
than the properties of other components, because application compo-
nents influence the behavior of scripting and layout of other compo-
nents. Let’s look at some examples.

7.1.1 Custom CSS

CSS text file The Custom CSS property allows you to use the CSS classes defined in a
CSS text file. You can either use a CSS file that is already uploaded to an
SAP BI platform, or you can upload a CSS file to an SAP BI platform.

For example, you can create your own CSS file on your local computer
with the code below. Next, you upload the CSS file to an SAP BI plat-
form. The Custom CSS property of the application should then point to
this file, so the defined classes can be used by other components.

The CSS file consists of the following code:

.TextPanelOrange
{
background-color:#d0e4fe;
color:orange;

text-align:center;
}

In each component, you can now assign the TextpanelOrange CSS class.
Assigning this class to a component will result in the layout of the com-
ponent changing to an orange text with a blue background.

There are specific applications available for editing CSS, for example,
Notepad. Insert the code as shown in Figure 7.2.

Save the file as a .css file. In Save as, select all files and name the file myc-
ssfile.css.

Now go to the application in the Design Studio tool and go the proper-
ties of the Application component. Press the ... button on the right side
of the Custom CSS input box (Figure 7.3).

Application Component Properties

209

7.1

Public folderYou are now looking at the SAP BusinessObjects BI platform folders. We
have selected a folder in the Public Folders section, which means that
other applications can access the CSS file we upload. To upload, click the
button with the upward arrow on the top left of the window (Figure 7.4).

Figure 7.2 Create a CSS File

Figure 7.3 Custom CSS

Figure 7.4 Public Folder on the SAP BusinessObjects BI Platform

Components and Properties

210

7

You now see a window where you can select your CSS file. Navigate to
the location where you saved your file and select the file by either dou-
ble-clicking it or selecting it and clicking Open. In the SAP Business-
Objects BI platform, you can now see your CSS file next to the already
present CSS file. Select mycssfile.css and click Open (Figure 7.5).

After you’ve selected the CSS file, return to the application. You now see
in the Application properties that the Custom CSS property points to
the file on the SAP BusinessObjects BI platform (Figure 7.6).

As the final step, add a Text component to the application and set the
CSS Class property to TextPanelOrange (Figure 7.7). You now can see
how the Text component changes the background color and the font
color.

Figure 7.5 CSS File on SAP BusinessObjects BI Platform

Figure 7.6 Custom CSS Property after Selection

Application Component Properties

211

7.1

7.1.2 Global Script Variables and On Startup

Communication
between
applications

As the number of applications in an organization grows larger, you will
eventually need a way for the applications to communicate with each
other. The best way to do this is via a few connected lightweight appli-
cations—this is easier to maintain then one very big application.

Design Studio is able to open another website or another Design Studio
application by using the APPLICATION.openNewWindow method. The URL
of the new application can include parameters for the other application.
With a global script variable, the other application will receive those
parameters and can thus allow outside applications to influence that
application.

External parameterWe will set up an external parameter by adding it as a variable to the
Variables property of the Application component (Figure 7.8). This is
done by adding the parameter in the URL, as we will show shortly. Once
the application starts, it will automatically run the application’s On Star-
tup script. In this handler, we will insert script code. When the external
parameter value is Green, the CSS class Green is set for the components
in the application; otherwise, the CSS class TextPanelOrange is used. In
the example we show only one code example, but in an application, you
would put all the components in the On Startup handler.

The On Startup script looks like this:

if (XvarTheme == "Green") {
TEXT_1.setCSSClass("GreenText");

} else {
TEXT_1.setCSSClass("TextPanelOrange");

}

Figure 7.7 Applying the CSS Class

Data Source Alias Component Properties

213

7.2

the method will look at the component and use the value to pass it as a
parameter to the first application.

As the URL with the CUID is quite complicated, the code above looks a
bit messy. We want to make the script code more readable. To do this
we add the variable DetailReport to the application. This variable holds
the value of the URL of the application. This will be easier to read and
maintain, especially when you want to link from several components.

The code now looks like this:

APPLICATION.openNewWindow(DetailReport +
"&XvarTheme="+ RADIOBUTTONGROUP_COLOR.getSelected-

Value());

7.2 Data Source Alias Component Properties

The Data Source Alias component also has properties, which are
shown in Table 7.2.

Data source Load
in Script

The Load in Script property is worth a special mention as a property
that allows you to delay the moment when the data is loaded. This prop-
erty tells the application if the data will be immediately loaded at startup
or will be triggered from a script at a later time. Reasons for delaying

Property Description

Name Name of the data source alias.

Visible Toggles the visibility of the component.

Load in Script Specifies if the data source is loaded immediately
when initializing the application or is loaded in the
script later. The standard setting is False, meaning
the data source will load immediately.

Data Source Name,

Connection, and Type

Click these fields if you want to change the data
source underneath the data source alias. The Add

Data Source screen will open with the current set-
tings.

Table 7.2 Data Source Properties

Components and Properties

214

7

include wanting to reduce the start time of the application or wanting to
apply filters before you load the data for performance reasons. When
you want to load the data, add this script line:

DS_MYDATA SOURCE.loadData source();

7.3 Visual Component Properties

In this section, we’ll discuss the properties of all the visual components
of Design Studio. Visual components can be divided into three catego-
ries: analytic, basic, and container. We’ll discuss the properties for each,
but we’ll begin with the common properties that all visual components
share.

7.3.1 Common Properties

Some properties are shared among all the visual components. These
involve the layout of the components—specifically, their sizes and mar-
gins. You can alter the layout and the relative positioning of a compo-
nent by editing the numbers in the Layout section of the properties.
You can also use the mouse to drag the component or its borders to the
desired size or position.

Property Description

Top Margin The distance between the top of the component and the
top of the parent component. Either a number in pixels or
Auto.

Left Margin The distance between the left side of the component and
the left side of the parent component. Either a number in
pixels or Auto.

Right Margin The distance between the right side of the component and
the right side of the parent component. Either a number in
pixels or Auto.

Bottom Margin The distance between the bottom of the component and
the bottom of the parent component. Either a number in
pixels or Auto.

Table 7.3 Common Properties

Visual Component Properties

215

7.3

Auto layout
properties

By setting the layout properties to Auto, you are telling the application
which settings are allowed to shrink and grow along with the screen
size. When a fixed number is entered for a property, then the value for
that property remains constant.

For example, consider a component with the following layout parameters:

� Top Margin: 10

� Left Margin: 10

� Bottom Margin: 10

� Right Margin: 10

� Width: Auto

� Height: Auto

The result of these settings is that the margins will remain equal in rela-
tion to the parent component, but the component itself will resize
according to the screen size.

As another example, consider these parameters:

� Top Margin: 10

� Left Margin: 10

� Bottom Margin: Auto

� Right Margin: Auto

� Width: 100

� Height: 100

Height The height of the component. Either a number in pixels or
Auto.

Width The width of the component. Either a number in pixels or
Auto.

Property Description

Table 7.3 Common Properties (Cont.)

Components and Properties

216

7

The result of these settings is that the component size is fixed to
100x100 pixels with a margin of 10 pixels to the left and top. A bigger
screen size will mean larger right and bottom margins.

7.3.2 Analytic Component Properties

Analytic components are components that use data to show numbers in
either table or graphical form. These components are tied to data by
assigning a data source to a component, and then using the component
to visualize the data output that is defined in the Initial view of the data
source.

We will describe the different types of analytic components next.

Chart Component

Graphically
visualize data

Chart components (Figure 7.9) can be added to application to visualize
data graphically. They can identify trends or outliers in data, and also
help users to focus on those data points. The Chart component shows as
soon you assign a data source to it, and the default Chart type is a col-
umn chart.

A Chart is meant to communicate data in a clear, concise way. The
example in Figure 7.10 shows the maximum temperatures per month
for a certain location. When you hover over a month, you see a tool tip
with the exact data value.

Table 7.4 lists the properties of the Chart component.

Figure 7.9 Chart Component Example

Visual Component Properties

217

7.3

Figure 7.10 Chart Component Properties

Property Description

Name The name of the component. This must be a unique name
within the application.

Visible Toggles the visibility of the Chart component at runtime.

Data Source Assigns data to the component to visualize. You can choose
from the defined data source aliases that are added to the
application.

CSS Class When a custom CSS file is assigned to the Application com-
ponent, you can assign a class here.

Chart Type A number of chart types are available, as outlined in more
detail below. In Figure 7.11, all the chart types are listed with
a screenshot for reference.

Swap Axes Specifies whether the horizontal and vertical axes of the data
source should be swapped before visualization.

Show Totals When True, the totals of the data source output will also be
visualized.

On Select This will open the Script Editor. The On Select handler is
triggered when a value is selected or deselected.

Table 7.4 Chart Component Properties

Components and Properties

218

7

Types of charts The types of charts are as follows:

� Line
A line graph shows a trend by showing a line with the labels in the x-
axis and the values in the y-axis. In addition, there is a variation of a
line chart:

� Horizontal line
A horizontal line chart shows the line going in a vertical direction
with the labels horizontal.

� Bar
A bar chart shows a bar for each value in the data source. There are
several variations of bar charts:

� Stacked bar
A stacked bar chart is a bar chart where you can also show how
different values add up to the total of the bar. The length of the
stacked bar depends on the sum of the values.

� 100% stacked bar
This shows bars, where each value is a part of the bar. This type of
chart will always show the total bar length at 100%.

� Bar combination
A combination of a bar chart and a line chart.

� Column
A column chart shows each value in a column. There are several vari-
ations of column charts:

� Stacked column
A stacked column is a column chart where you can also show how
different values add up to the total of the column. The total length
depends on the sum of the values.

� 100% stacked column
This shows columns, where each value is part of the column.

� Column combination
A column combination chart is a combination of a column chart
and a line chart.

� Area
An area chart is like a line chart with the area under the line colored
in. In addition, there is a variation of an area chart:

Visual Component Properties

219

7.3

� Horizontal area
A horizontal area chart is an area chart where the line is vertical
and the labels are horizontal.

� Crosstab
A crosstab is a table in which numbers are presented along rows and
columns.

� Bubble
A bubble chart is a chart where you can map three key figures: one on
the x-axis, one on the y-axis, and one that affects the size of the bub-
ble.

� Waterfall
A waterfall chart is a bar chart where bars are shown in a cumulative
way. The total value of bar 1 is the starting point of bar 2. There are
two variations of a waterfall chart:

� Stacked waterfall
A stacked waterfall chart is a waterfall chart with the added ability
to add up several values in each bar.

� Horizontal waterfall
A horizontal waterfall chart shows the bars going from left to
right and the labels horizontal.

� Pie
A pie chart shows the relative size of entities compared to the whole.
In addition, there is a variation of a pie chart:

� Multiple pie
A multiple pie chart shows a different pie graph for each key fig-
ure and shows the relative sizes for each value on the graphs.

� Radar
A radar chart shows the relative size for each value. It is like a line
graph with a round axis. In addition, there is a variation of a radar
chart:

� Multiple radar
A multiple radar chart shows a radar graph for each key figure.

� Scatter
A scatter chart shows combinations of key figures, where one key fig-
ure is plotted along the x-axis and the other along the y-axis.

Visual Component Properties

221

7.3

With the Data Series properties of a chart (Figure 7.13), you can choose
how many data series will be displayed. There is only a choice when
more than five data series are available.

Crosstab Component

Multidimensional
data

The Crosstab component (Figure 7.14) is useful for displaying detailed
multidimensional data with analytic purposes. Used together with the

Figure 7.12 Additional Properties of a Chart Component

Figure 7.13 Data Series Properties

Components and Properties

222

7

Dimension Filter component and the Filter Panel component, which
will be described later in this chapter, it is a very flexible way to show
and work with data. You can use the Crosstab component to sort data,
filter data, move or swap dimensions, and select cells that in turn can be
scripted to add filters to data sources.

Table 7.5 shows the properties of the Crosstab component.

Figure 7.14 Crosstab Component

Property Description

Name The name of the component. This must be a unique
name within the application.

Visible Toggles the visibility of the Crosstab component at
runtime.

Data Source Assigns data to the component to visualize it. You
can choose from the defined data source aliases you
added to the application.

Pixel-Based Scrolling Enables a smooth scrolling experience. This property
is recommended when building an application for
mobile devices or applications with a low data vol-
ume.

Row Limit Maximum number of rows for pixel-based scrolling.

Column Limit Maximum number of columns for pixel-based scroll-
ing.

Table 7.5 Crosstab Component Properties

Visual Component Properties

223

7.3

Clickthrough from
Chart component
to Crosstab
component

As an example of when this component can come in handy, you can use
the Crosstab component in combination with a Graph component.
Users can click a value on the Graph component. The Crosstab compo-
nent will then show detailed information about the selected value. The
selected value then can be used as a filter that will be used for a second
component for a more detailed view.

For this example, let’s assume that a second data source is being filtered
based on the selection that is made in the Crosstab component. This
results in an interactive screen that will pop up with additional informa-
tion when a cell is being selected. Figure 7.15 shows an application
where the user selected the decade 1950-1959 from below the graph
and a Crosstab component appeared to show each year in that decade.

CSS Class When a custom CSS file is assigned to the Applica-

tion component’s properties, you can assign a class
here.

Show Scaling Factor When this property is set to True, the scaling factor
will be shown in the column header.

Always Fill If set to True, the Crosstab component will be sized
as defined in the Layout properties. This means that
if the number of cells is not sufficient to fill the space
that was set for the Crosstab component, the cells
will increase in size until the entire frame (the width
and height of the component) is filled.

Enable Selection When set to True, users will be able to select cells in
the Crosstab component by hovering over or clicking
the inner members of the required dimension. This
does not apply for result cells. Selecting a cell will
result in an On Select handler where you can insert
script to perform several actions based on the user’s
selection.

On Select This will open the Script Editor. The On Select han-
dler is triggered when a value is selected or dese-
lected.

Property Description

Table 7.5 Crosstab Component Properties (Cont.)

Components and Properties

224

7

The Crosstab component is placed inside a Panel component that is not
visible at the start of the application. When the user clicks on a bar in the
chart, a filter is applied to the second data source and the Panel compo-
nent is set to visible.

The code for this is shown below:

DS_SECOND.setFilter("ZDECADE",
CHRT_SELECTVALUE.getSelectedMember("ZDECADE"));

PNL_YEARS.setVisible(true);

Dimension Filter Component

Add a filter for one
dimension

The Dimension Filter component (Figure 7.16) is useful for adding a fil-
ter for one dimension. This filter can be applied to multiple data sources.
When clicked at runtime, the component opens a popup in which the
user is able to select a value or a range of values. In the Selection tab,
you can choose filter values by selecting the members in the table, and
you can limit the number of possible choices by entering a search string
in the textbox. For example, if you want to be able to choose from all the
products starting with N, enter “N*” in the text box.

Figure 7.15 Clickthrough from Graph to Crosstab

Visual Component Properties

225

7.3

In the Range tab, you can build a range filter with a lowest and a highest
value. First select the Starts at row and select the value. Then select the
Ends at row and select the highest value. Click the Add to List button
on the bottom of the popup screen. Now you can make a new range fil-
ter and add it to the list. When you’re finished, click the apply button on
the top right. When you click Back, the last filter you entered will be
ignored.

When you want the user to be able to filter on more dimensions, you
have to add a Dimension Filter component for each dimension to
which you want to allow the user to apply filters. (Alternatively, you
could use the Filter Panel component, which is discussed next.)

Table 7.6 shows the properties of the Dimension Filter component.

Figure 7.16 Dimension Filter Component

Property Description

Name The name of the component. This must be a
unique name within the application.

Visible Toggles the visibility of the Dimension Filter

at runtime.

Table 7.6 Dimension Filter Properties

Components and Properties

226

7

Data Source Assigns data to the Dimension Filter com-
ponent. This data source delivers the items
for which you can set a Dimension Filter on
the target data sources defined in the next
property.

Target Data Sources With this property, the Dimension Filter

component can be applied to other data
sources. Data sources must have the same
dimension and must be defined in the appli-
cation. If you have an application that shows
sales, purchases, general ledger, and trans-
port for regional offices, you have several
data sources for each dataset. One Dimen-

sion Filter component on a regional office
dimension would set the correct filter on all
these data sources.

Dimension The dimension to be filtered.

CSS Class When a custom CSS file is assigned to the
Application component, you can assign a
class here.

Dimension Name Shows the dimension name.

Display Mode This property sets the way the filters are dis-
played:

� Filter List: Filter values are displayed as
comma-separated values.

� Filter Count: The number of applied
items is displayed.

Popup Width/Height/Position The layout of the popup screen component
that is used to define the Dimension Filter

component.

On Apply The script that is executed when a filter is
applied. A Script Editor opens for this prop-
erty.

Property Description

Table 7.6 Dimension Filter Properties (Cont.)

Visual Component Properties

227

7.3

When you use multiple Dimension Filter components, you can limit
the usage by hiding the components that cannot be used. For example, if
the user already filtered on products, you could stop him from also fil-
tering on customers by hiding the Dimension Filter component that
handles the customer filter. This can be done using the following code:

DIMENSIONFILTER_CUSTOMER.setVisible(false);

Filter Panel Component

Apply filters
on multiple
dimensions

The Filter Panel component (Figure 7.17) is a component that allows
you to apply filters on several dimensions to target data sources. The
Dimension Filter component, discussed previously, can also be used to
apply filters to target data sources; the Filter Panel component, how-
ever, is able to put filters on more than one dimension.

The Filter Panel component shows all the dimensions of the data
source to which it is assigned. The user can open an input box by clicking

Figure 7.17 Filter Panel Component

Components and Properties

228

7

the name of the dimension. By clicking the “-” sign on the right, the user
can open a selection screen to pick values.

Table 7.7 shows the properties of the Filter Panel component.

Display
dimensions

One of the things you can do using the Filter Panel component is con-
trol which dimensions you display. Although you could put all the

Property Description

Name The name of the component. This must be a unique
name within the application.

Visible Toggles the visibility of the Filter Panel component
at runtime.

Data Source Assigns data to the component for filtering. You can
choose from the defined data source aliases added to
the application.

Target Data Sources With this property, the Filter Panel component can
be applied to other data sources. Data sources must
have the same dimension and must be defined in the
application.

Dimensions Select and order the dimensions that will be available
for the user.

CSS Class When a custom CSS file is assigned to the Application

component, you can assign a class here.

Dimension Name Shows the dimension name.

Display Mode Shows the filters or the number of filters applied.

Member Display Sets member display mode, for example, key + text.

Title Sets a title for the Filter Panel component.

On Apply The script that is executed when a Filter Panel com-
ponent is applied. A Script Editor opens for this prop-
erty.

On Cancel The script that is executed when the Cancel button is
clicked. A Script Editor opens for this property.

Table 7.7 Filter Panel Component Properties

Visual Component Properties

229

7.3

dimensions in one filter panel, it is easier for the user of the application
when you put dimensions that belong together in one filter panel. For
example, in an application that shows sales data, you can put all the
customer dimensions in one filter panel, the product dimensions in the
second, and time dimensions in the third panel. You could also put a
couple of Filter Panel components in one Panel container component
and, for example, allow the user to toggle the visibility of these Panel

components. That way you can create a dimension-like menu structure
in which the user can navigate.

The Filter Panel component already has interactivity built into it, as it
interacts with the data source. We can, however, add something to the
layout to highlight that this component has been used to add a filter. In
the On Apply handler, set the following code. This will assign a CSS class
with, for example, a different font color to signal that this filter has been
used.

FILTERPANEL_1.setCSSClass("Active");

7.3.3 Basic Component Properties

No direct link to
data source, no
child components

In this section we are going to look at the basic components. Basic com-
ponents are buttons, text components, and image components. They do
not have a direct link to a data source or allow child components.

Button Component

Buttons (Figure 7.18) allow the user to interact with the application. To
build this interactivity, you add a script to the Button component’s On

Click property.

Table 7.8 shows the properties of the Button component.

Figure 7.18 Button Component

Components and Properties

230

7

Use the Enabled
and/or Text

properties for
easier navigation

Having the appearance of the Button component itself change when the
user clicks the button can help the user to understand what is happening
in the application. For example, if the user switches to another screen
and comes back five minutes later, it is immediately apparent where he
is in the application.

For a simple example, if you have a Button component that, when
clicked, excludes internal sales, it would be helpful if the Button com-
ponent showed that state. When you look at the examples in Figure
7.19, it is clear that internal sales and pipeline sales are included, but
OEM sales and sold-but-not-delivered sales are not.

Property Description

Name The name of the component. This must be a unique name
within the application.

Visible Specifies whether the Button component is visible.

Enabled Specifies whether the Button component is enabled. Disabled
Button components are not available for interaction.

Text Specifies the text displayed on the Button component. It is
possible to display text, an icon, or a combination of both.

Icon Specifies the icon to be displayed on the Button component. If
the icon image is in the application directory, providing the file
name is sufficient. When the file is located somewhere else,
click the ... button to the right of the textbox of the property to
navigate to the image. If the image is located on the Internet or
intranet, you can use a URL. For example: http://www.image-
server.com/myimage.jpg.

CSS Class When a custom CSS file is assigned to the Application compo-
nent, you can assign a class here.

On Click Opens the Script Editor to add user interaction.

Table 7.8 Button Component Properties

Figure 7.19 Button States

Visual Component Properties

231

7.3

To make the switch between states possible, the script checks the But-

ton component’s current state and switches to the other state. The script
for our internal sales example is as follows:

if (BUTTON_INTERNAL.getText() =="Include Internal Sales") {
BUTTON_INTERNAL.setText("Internal Sales included");
BUTTON_INTERNAL.setCSSClass("Included");

}
else
{

BUTTON_INTERNAL.setText("Include Internal Sales");
BUTTON_INTERNAL.setCSSClass("Included");

}

To further emphasize the state, we have added a script line to set the CSS
class of the text object depending on its current state, so the user can see
the state based on the appearance of the button.

Checkbox Component

On/off buttonsCheckbox components (Figure 7.20) help the user to interact with the
application. Checkbox components can be used as on/off buttons to sup-
port other components.

Table 7.9 shows the properties for the Checkbox component.

Figure 7.20 Checkbox Component

Property Description

Name The name of the component. This must be a unique name within
the application.

Visible Specifies whether the Checkbox component is visible.

Table 7.9 Checkbox Component Properties

Components and Properties

232

7

Showing key
figures

To understand how the Checkbox component can improve an applica-
tion, look at Figure 7.21. In this example, you can use the Checkbox

component to manipulate the graph so that it only shows one of the
three key figures based on the choice of Checkbox components. By
using an On Click event for each Checkbox component, you can select
and deselect key figures and see the graph change accordingly.

One could also imagine more complicated scenarios where some choices
make other options unfeasible. An example is when a user has multiple
Checkbox components to filter the data source. If you want to avoid a
situation where the user applies a filter that results in 0 records, you can
disable all the components that would lead to this result. Using the
enabled and selected property in the script, you can manage the Check-

box components to reflect those scenarios.

In the On Click property of Checkbox_1 the script would look like this:

CHECKBOX_1.setChecked(true);
CHECKBOX_2.setChecked(false);
CHECKBOX_3.setChecked(false);

Date Field Component

The Date Field component (Figure 7.22) enables the user to select a
date. The entered date can be used in other parts of the application. To
enable this interactivity, a script has to be added to the On Select han-
dler.

Table 7.10 shows the properties of the Date Field component.

Enabled Specifies if the checkbox is enabled. Disabled buttons are not
available for interaction.

Text Specifies the text displayed on the Checkbox component.

Selected Specifies whether the Checkbox component is initially selected.

On Click Opens the Script Editor to add user interaction.

Property Description

Table 7.9 Checkbox Component Properties (Cont.)

Visual Component Properties

233

7.3

Figure 7.21 Example Checkbox for Key Figure Selection

Figure 7.22 Date Field Component

Property Description

Name The name of the component. This must be a unique name
within the application.

Visible Specifies whether the Date Field component is visible.

Enabled Specifies whether the component is enabled. Disabled Date

Field components are not available for interaction.

CSS Class When a custom CSS file is assigned to the Application compo-
nent, you can assign a class here.

Table 7.10 Date Field Component Properties

Components and Properties

234

7

Set a date as a filter The main use for the Date Field component is to enable the user to set
a date, which is then used to filter a data source dimension that holds
calendar day values. The statement to do this is as follows:

DS_2.setFilter("0CALDAY", DATEFIELD_1.getDate());

Dropdown Box Component

Dropdown Box components (Figure 7.23) enable the user to select
items from a list. A common use for this component is setting a filter.

Table 7.11 shows the properties of the Dropdown Box component.

Date Sets the initial date.

On Select Opens the Script Editor to add user interaction.

Property Description

Table 7.10 Date Field Component Properties (Cont.)

Figure 7.23 Dropdown Box Component

Property Description

Name The name of the component. This must be a unique name
within the application.

Visible Specifies whether the component is visible.

Enabled Specifies whether the component is enabled. Disabled Drop-

down Box components are not available for interaction.

Table 7.11 Dropdown Box Component Properties

Visual Component Properties

235

7.3

Populate the
Dropdown Box
component with
metadata

A common way to set the items you can select in a Dropdown Box com-
ponent is to populate the items of the component at runtime. To do this,
we will add a script to the Application component at the On Startup
handler:

DROPDOWN_1.setItems(DS_1.getMemberList("0CALMONTH",
MemberPresentation.EXTERNAL_KEY, MemberDisplay.KEY_TEXT, 20));

This script instructs the application to fill the items of dropdown_1 with
the 0CALMONTH dimension of the data source DS_1.

Avoid empty
datasets

Using the actual values in the data source will ensure that the Drop-

down Box component will only hold the values that are actually avail-
able in the data source. This will avoid situations where a user applies a
filter and the result is an empty dataset. In this example, it could very
well be that the current year hasn’t ended yet and not all months are
available. In this situation, there will be fewer than 12 months to choose
from.

Image Component

Change image at
runtime

With the Image component (Figure 7.24), you can enhance the layout of
the application. The Image component also has a number of properties
that make it very useful for interactivity purposes. One of the most use-
ful properties is the ability to change the Image component at runtime.
This means you can change the look of the application based on the data
values or as the result of specific user interactivity actions. Image com-
ponents can also respond to hovering and clicking.

CSS Class When a custom CSS file is assigned to the application compo-
nent, you can assign a class here.

Items With this property, the items available in the Dropdown Box

component can be edited. A key has to be entered for each
value. Providing a text label and setting a default item is
optional.

On Select Opens the Script Editor to add user interaction.

Property Description

Table 7.11 Dropdown Box Component Properties (Cont.)

Components and Properties

236

7

Table 7.12 shows the properties of the Image component.

Figure 7.24 Image Component

Property Description

Name The name of the component. This must be a unique name
within the application.

Visible Specifies whether the Image component is visible.

CSS Class When a custom CSS file is assigned to the Application com-
ponent, you can assign a class here.

Image The location of the main image file.

Hover Image The location of the image file that shows when the user hov-
ers over the image.

Click Image The location of the image file that is shown when the user
clicks the image.

Opacity % By controlling this property, you can establish how transpar-
ent the Image component is. 0% opacity means that the
Image component is not visible, and it becomes more
opaque the closer to 100% you go. This property can be used
for layout reasons; by setting the opacity of some Image

components a bit higher than others, you can send a subtle
but clear message to the user. For example, if you have On

and Off buttons, you can make the buttons that are in the
On position more opaque than those in the Off position.
This gives you the ability to convey a lot of information about
the state of the buttons without using much room or color,
thus keeping your design easy to grasp for the user.

On Click Opens the Script Editor to add user interaction.

Table 7.12 Image Component Properties

Visual Component Properties

237

7.3

Using images for a
scorecard

The Image component can often come in handy, for example, when cre-
ating scorecards. For a scorecard, green, yellow, and red symbols are
typically used. In the example below, the script evaluates the value of a
key figure in the data source. If the value of the key figure is 1, then a
green light image is used; if the value of the key figure is 2, then a yellow
light will show; and for the value 3, a red light will show.

Instead of writing the location of the image in these statements, we have
introduced three global variables holding the location of the images. The
three variables are Greenlight, Yellowlight, and Redlight.

if (DS_1.getDataAsString("ZBB_NMBR","ZBB_KPIID=00001") == "1")
{IMG_FIN1_EVAL.setImage(Greenlight);}
else {
if (DS_1.getDataAsString("ZBB_NMBR","ZBB_KPIID=00001") == "2")
{IMG_FIN1_EVAL.setImage(Yellowlight);}
else {
if (DS_1.getDataAsString("ZBB_NMBR","ZBB_KPIID=00001") == "3")
{IMG_FIN1_EVAL.setImage(Redlight);}
}}

Input Field Component

Input content at
runtime

The Input Field component (Figure 7.25) enables the user to type spe-
cific content into the application at runtime. For example, an Input

Field component can be useful for filtering with wildcards (*). This kind
of filtering is possible because the user is free to type anything he wants
into the component’s text box.

Table 7.13 shows the properties for the Input Field component.

Figure 7.25 Input Field Component

Property Description

Name The name of the component. This must be a unique name
within the application.

Table 7.13 Input Field Component Properties

Components and Properties

238

7

Wildcard use The Input Field component can come in quite handy, for example, if
you do not want to restrict a user in setting a filter value. For example,
if a user wants to select all the years in the range 2001–2009, he can
input “20*”, and with that value a filter can be set on the data source
with this script:

1.setFilterExt("0CALYEAR",INPUTFIELD_1.getValue());

As another example, if you want to filter on products and you have a lot
of different kinds of product types in your product line (red sauce, green
sauce, sweet sauce, etc.), a user can input “*sauce” and apply the filter
and see which products come up.

This also could set up a cascading filter where a List Box or Dropdown

Box component is filtered based on the input in the Input Field compo-
nent.

List Box Component

List Box components (Figure 7.26) enable users to select items. A
selected item can be used to filter for or choose a particular functionality
in the application. As the List Box component shows all the values in a
list, it is advisable to limit the number of items.

Visible Specifies whether the component is visible.

Enabled Specifies whether the component is enabled. Disabled Input

Field components are not available for interaction.

CSS Class When a custom CSS file is assigned to the Application compo-
nent, you can assign a class here.

Value The initial value of the Input Field component.

On Change Opens the Script Editor to add user interaction.

Property Description

Table 7.13 Input Field Component Properties (Cont.)

Components and Properties

240

7

Build a cascading
filter

Consider a case where a user has to navigate through a lot of data. In this
situation, you probably want a way to drill down instead of finding your
way through a lot of choices. With the help of List Box components, you
can achieve this. For example, you could first build a List Box compo-
nent that contains all the product categories. Then, a second List Box

component would contain all the products. When you select a product
category from the first List Box component, the second List Box compo-
nent will be populated with the products within that category. Using
this technique, you can lead the user step by step through the possible
choices.

Let’s look at an example where we apply a category filter to the data
source. Then the data source repopulates the items of the second List

Box component with the accompanying products and makes this second
component visible, while the first List Box component is set to invisible.
Finally, when the user selects a product on the second List Box compo-
nent, the script in this component will filter the data source on that
product. Other components that use that same data source will then
only show the data for that one product.

The code is as follows:

DS_1.setFilterExt("0PRODUCTGROUP", LISTBOX_CATEGORY.getSelect-
edValue());
LISTBOX_PRODUCT.setItems(DS_
1.getMemberList("0PRODUCT", MemberPresentation.EXTERNAL_
KEY, MemberDisplay.TEXT, 20));
LISTBOX_CATEGORY.setVisible(false);
LISTBOX_PRODUCT.setVisible(true);

Items With this property, the items available in the List Box compo-
nent can be edited. A key has to be entered for each value.
Having a text and a default item is optional. Click the ... button
on the right side of the property to open an Edit Screen dialog
box where you can add, edit, or remove items.

On Select Opens the Script Editor to add user interaction.

Property Description

Table 7.14 Properties of the List Box Component (Cont.)

Visual Component Properties

241

7.3

Radio Button Group Component

The Radio Button Group component (Figure 7.27) enables users to
select items. A selected item can be used to filter or to make a choice for
a particular functionality in the application. As the Radio Button Group

component shows all the values in a list, it is advisable to limit the num-
ber of items.

Table 7.15 shows the properties of the Radio Button Group compo-
nent.

Figure 7.27 Radio Button Group Component

Property Description

Name The name of the component. This must be a unique name
within the application.

Visible Specifies whether the Radio Button Group is visible.

Enabled Specifies whether the Radio Button Group is enabled. Dis-
abled Radio Button Group components are not available for
interaction.

CSS Class When a custom CSS file is assigned to the Application compo-
nent, you can assign a class here.

Columns Number of columns used to display the Radio Button Group

components.

Items With this property, the available items can be edited. A key has
to be entered for each value. Having a text and a default item is
optional.

On Select Opens the Script Editor to add user interaction.

Table 7.15 Radio Button Group Component Properties

Visual Component Properties

245

7.3

Grid Layout component is very useful for dividing the screen into rows
and columns. The sizes of the rows and columns can be adjusted by set-
ting the relative size of each column and row.

Table 7.17 shows the properties of the Grid Layout component.

Create advanced
layouts

You can create advanced layouts using several Grid Layout compo-
nents. For example, if you have a main Grid Layout component with
three rows, of which the middle row is the largest, you can divide the
top and bottom row by adding a new Grid Layout component in the
top row and bottom row.

Figure 7.30 Grid Layout Component

Property Description

Name The name of the component. This must be a unique
name within the application.

Number of Rows The number of rows in the grid.

Row Height The relative height of the row in comparison to the
other rows. Each row starts with the value 1. Setting
the rows’ heights then divides the height of the grid
according to the Row Height settings for each row.

Number of Columns The number of columns in the grid.

Column Width The relative width of the column in comparison to the
other columns. Each column starts with the value 1.
Setting the columns’ widths divides the width of the
grid according to the Column Width setting for each
column.

Table 7.17 Properties of the Grid Layout Component

Components and Properties

246

7

Let’s consider a case where you choose to divide the top row into three
columns and the bottom row into five. In Figure 7.31, you can see how
this layout would look to the user. In Figure 7.32, you can see the out-
line as it would look in Design Studio at design time.

Figure 7.31 Grid Layout View with Three Rows and Several Columns

Figure 7.32 Outline View with Nested Grid Layout Components

Visual Component Properties

247

7.3

Pagebook Component

Swipe or drag to
other pages

The Pagebook component (Figure 7.33) shows one page at a time and
enables the user to switch to other pages by either swiping (iPad or
iPhone) or dragging (computer mouse). It is also possible to switch pages
by using the script language.

In Figure 7.33 you can see several pages connected to the Pagebook

component. In design mode, it is possible to add or remove pages from
the component. Each page is an empty canvas. Only the canvas of the
selected page is visible to the user.

Table 7.18 shows the properties of the Pagebook component.

Figure 7.33 Pagebook Component in the Outline View

Property Description

Name The name of the component. This must be a unique
name within the application.

Visible Specifies whether the Pagebook component is visible.

CSS Class When a custom CSS file is assigned to the Application

component, you can assign a class here.

Selected Page Index Sets the initial visible page of the Pagebook compo-
nent. Note: 0 represents the first page of the Page-

book component. 1 represents the second page, and
so on.

Transition Effect Specifies the transition effect when a user swipes
between pages. The options are:

� Slide in

� Fade

� Flip

� Cube

Table 7.18 Pagebook Component Properties

Visual Component Properties

249

7.3

Panel Component

Group components
together

A Panel component is used to group components together. By using the
methods of the Panel component, including .setCssClass, it is possible
to build interactivity into the application. As the number of components
tends to grow quickly in an application, it is advisable to use these Panel

components often to group components that belong together, even if no
interactivity is planned. Grouping allows you, for example, to hide a
group of components at design time so your screen isn’t cluttered when
you are working on another part of the application.

Table 7.19 shows the properties of the Panel component.

Figure 7.34 Example Using a Pagebook Component

Property Description

Name The name of the component. This must be a unique name
within the application.

Visible Specifies whether the Panel component is visible.

Table 7.19 Panel Component Properties

Components and Properties

250

7

Popup Component

The Popup component can be used to let a screen appear in the applica-
tion, on top of all the other components, where users can make quick
entries or configurations or create selections. Popup components can
also be quite helpful for help messages and for providing further infor-
mation about elements. The main reason to use a Popup component is to
allow the user to perform a particular task and freeze the rest of the
application until that task is done. You can ensure this by using the
Modal property of the component.

Popup component
restrictions

There are two restrictions on the use of the Popup component:

� The Popup component can only be located in the root layout and not
within another container element.

� The Popup component can only be positioned in relation to the root
layout.

Table 7.20 shows the properties of the Popup component.

Enabled Specifies whether the Panel component is enabled. Disabled
Panel components are not available for interaction.

CSS Class When a custom CSS file is assigned to the Application compo-
nent, you can assign a class here.

CSS Style Here it is possible to enter CSS code to change the layout of the
Panel component.

On Click Opens the Script Editor.

Property Description

Table 7.19 Panel Component Properties (Cont.)

Property Description

Name The name of the component. This must be a unique name
within the application.

Table 7.20 Popup Component Properties

Visual Component Properties

251

7.3

Useful Popup
component design

A useful way to work with a Popup component is to set up a Button

component in the application and have the Popup component appear
near the button. For example, if you want to show a Popup component
with some application settings, a Button component to the top right of
the screen can be combined with a Popup component. The setting for
animation can be set to Vertical Slide Animation. When you use the
Popup component this way, it will look like the popup comes directly
out of the button and immediately grabs the user’s attention, as the user
was already clicking that button.

To show the Popup component, add this code in the first Button com-
ponent:

POPUP_1.show();

You add a second Button component in the Popup component itself and
set the following code in the second button component to hide the com-
ponent again:

POPUP_1.hide();

Modal If the Popup component is set to Modal, the user can only nav-
igate within the Popup screen. If the Modal property is set to
false, the user can also interact with other elements of the
application.

Autoclose Specifies whether the popup screen automatically closes when
the user interacts outside of the Popup in the application.

Animation Specifies the animation effect when the Popup is opened or
closed:

� No Animation

� Flip Animation

� Pop Animation

� Horizontal Slide Animation

� Vertical Slide Animation

Property Description

Table 7.20 Popup Component Properties (Cont.)

Components and Properties

252

7

Tabstrip Component

A Tabstrip component (Figure 7.35) allows you to group your applica-
tion into tabs. You can also use this component to create possibilities for
user interaction. The Tabstrip component works much the same way as
the Pagebook component, creating several tabs, only one of which is
visible at a time. The difference with a Pagebook component is the way
it allows you to navigate. With the Tabstrip component, you automati-
cally have a direct way to go from one tab to any of the other tabs. With
a Pagebook component, you can only go to the previous or next page,
or you have to write scripts and add Button components to create this
same functionality.

Table 7.21 shows the properties of the Tabstrip component.

Figure 7.35 Tabstrip Component

Property Description

Name The name of the component. This must be a unique
name within the application.

Visible Toggles the visibility of the component.

CSS Class When a custom CSS file is assigned to the Application

component, you can assign a class here.

Selected Tab Index Specifies the tab that will initially be shown at the start.
Index 0 opens the first tab of the component, index 1
the second, etc.

On Select Opens the Script Editor. On Select triggers each time a
user selects a tab.

Table 7.21 Properties of the Tabstrip Component

Working with Components and Properties

253

7.4

If you want to go through the tabs step by step, you can add a Button

component outside the Tabstrip. Each time the Button component is
clicked, the user goes to the next page until reaching the last (page 4, in
our example). Then the Tabstrip component jumps back to the starting
tab.

var tabnumber = TABSTRIP_1.getSelectedTabIndex();

if (tabnumber == 4)
{

TABSTRIP_1.setSelectedTabIndex(0);
} else {

TABSTRIP_1.setSelectedTabIndex(tabnumber + 1);
}

You could use this for a wizard-like navigation through several steps,
and if the final step is done, return to the starting page. A wizard-like
solution is handy for when you want to enable users to do complicated
tasks and guide them through the process.

7.4 Working with Components and Properties

As you work more and more with Design Studio, you’ll want to adopt
some best practices for working with all the components and properties
available. In this section, we’ll walk you through three important parts
of this process: creating application templates, using container compo-
nents, and adopting naming conventions for your components.

7.4.1 Create Application Templates

The longer you use Design Studio, the more applications you develop.
Therefore, it’s helpful to have a template in place with a basic compo-
nent structure and all the right colors and settings. This can be helpful
for developers, as they immediately have a base to work from, and a lot
of repetitive work is removed from their workload.

Figure 7.36 shows an application structure. As you can see, this applica-
tion already contains a lot of structure with panels. We want to save this

Working with Components and Properties

255

7.4

Figure 7.38 Preferences Menu with the Location of the Template Folder

Figure 7.37 Application Menu with Open Repository Folder Option

Components and Properties

256

7

In the Template folder, there is a folder with the name Desktop. Copy
the GRID_SHOW folder to the Desktop folder in the template location.
Now the files are in place. The next step is to create a text file and a pic-
ture so the template will show up properly in the New Application Wiz-
ard.

1. Create a text file in Notepad, set a text as shown in Figure 7.39, and
save the file as GRID_SHOW.info in the desktop directory.

2. Next, create a screenshot image with an image editor and decrease the
size of the screenshot to 42 pixels wide and 63 pixels tall, as shown in
Figure 7.40.

Figure 7.39 Text File

Figure 7.40 Screenshot File in the Image Editor

Working with Components and Properties

257

7.4

3. Put the text file and the image file in the Template folder.

4. With these two files and the folder in the Desktop folder within the
template location, you should be able to use the new template. In
Design Studio select New in the Application menu.

5. Enter a name and description and click next. In the Template Selec-

tion window you now also see the template, as shown in Figure 7.41.

7.4.2 Using Container Components

Container and
Panel components

Whenever you have a small group of components that belong together,
put them in a separate container component. If you have several compo-
nents in one Panel component, you can work with the Panel compo-
nent, and the components inside the Panel component will keep their
places relative to the container component. Furthermore, if you hide the
container component during design time, you will immediately hide all
the components within the container component. To set up this struc-
ture, follow the steps below:

1. Drag a Panel component onto the canvas (Figure 7.42).

2. Next drag a Button component and a Text component into the Panel

component. Drag another Button component onto the canvas, out-
side of the Panel component (Figure 7.43).

Figure 7.41 Template Selection Screen with Custom Template

Components and Properties

258

7

Figure 7.42 Panel Component Added

Figure 7.43 Add Components to the Panel

Working with Components and Properties

259

7.4

3. Name the button outside the Panel component BUTTON_SHOW.

4. Set the text of this button to “SHOW PANEL”.

5. Name the button inside the Panel component BUTTON_HIDE.

6. Set the text of this button to “HIDE PANEL”.

7. In BUTTON_SHOW, add the following script to the On Click handler:

PANEL_1.setVisible(true);

8. In BUTTON_HIDE, add the following script to the On Click handler:

PANEL_1.setVisible(false);

9. Run the application.

Now, when you click the Show Panel button, the other components
will become visible. Click the Hide Panel button, and the components
will disappear again. By using a container component, you control mul-
tiple components with one script line.

At design time, you can also control the visibility of the container com-
ponent from the Outline view by right-clicking the component (Figure
7.44). With the Hide option you can hide the Panel component with all
the components inside it.

7.4.3 Using a Naming Convention for Your Components

Using a naming convention will help you to more easily find your way
through all the components inside an application. Especially if someone

Figure 7.44 Possibilities in the Outline View

263

Interactivity is the key to Design Studio applications. In this
chapter, we’ll show you how it’s done.

8 Scripting for Interactivity

Design Studio is a tool that is designed to create interactive applications.
To support this interactivity, the tool uses a script language that is exe-
cuted when the user performs an action in the application. In this chap-
ter, we will have a closer look at the script language and will show exam-
ples of how to use the script in your application.

In Section 8.1, we will introduce you to the script language, including its
elements and what you need to know to build your first script. In Sec-
tion 8.2, we will explain the basics of script writing, including some
Design Studio tools that will come in handy for this purpose. In Section
8.3, we will provide a comprehensive description of all the script meth-
ods and properties of the components in Design Studio. Finally, we will
devote the entire second half of the chapter (Section 8.4, Section 8.5,
Section 8.6, and Section 8.7) to showing you examples of how to build
interactivity in applications.

Tips for CSS

This chapter uses CSS. For some additional tips about CSS, see Appendix A.

8.1 BI Action Language

BIALThe script language in Design studio is called BI Action Language (BIAL).
BIAL is a true subset of JavaScript, and is executed on the Analysis
Application Design Service, which is a service that is installed on the
SAP BusinessObjects BI platform server or SAP NetWeaver BW server. It
is also present on the client computer to run the Design Studio tool

BI Action Language

265

8.1

got back from the .getselected method to present it to the user or use
it to add a filter to a data source.

The call statement has the following format:

<Component>.<Method><Arguments>;

Each element of this format is described in Table 8.1.

Conditional Statements

Two formats for
conditional
statements

Conditional statements can have two formats. The first is as follows:

If (<condition>)
{
<Statements when the condition is met>
}

Format Description

<Component> This is the name of the component in the application with
which you want to do something. This component can be the
application itself, a data source, or a component that you have
added to the application. When you add components, you
want to name them properly—later on, when scripting, it
makes a lot more sense if the name of the component suggests
what functionality it delivers.

For example, LISTBOX_1 does not provide the same informa-
tion as LISTBOX_PRODUCTFILTER, although you can work with
both names. You can always change these names later; refer-
ences in scripts will change accordingly.

<Method> This is the operation that you want the component to do.
Each component type has its own set of operations. Some
operations, like setVisible, are quite common. Others, such
as setFilter, are limited to a specific type of component.

<Arguments> This is a comma-listed set of expressions. These expressions
must match the requirement of the method. You can use func-
tions or other call statements as an argument for another com-
ponent.

; Each statement has to end with a semicolon.

Table 8.1 Format of a Call Statement

Scripting for Interactivity

266

8

The second is:

If (<condition>)
{
<Statements when the condition is met>
}
else
{
<Statements when the condition is not met>
}

Boolean
expressions

In both of these formats, <condition> is a Boolean expression, meaning
it must have a value of either true or false. The Boolean expression can
be a constant, but it also can be a combination of expressions that
together result in a true or false value.

There are a lot of possible constructions to build a Boolean expression
resulting in a true or false value, as shown in Table 8.2. You are not
limited to these constructions. You can combine them with other con-
structions as long the end result is true or false.

Construction Type Construction Example

Constant TRUE

Call statement Button_1.isEnabled;

Comparison Button_1.isEnabled ==

Button_2.isEnabled

Multiple comparisons where all the
values must be TRUE

(AND logic)

Button_1.isEnabled ==

Button_2.isEnabled

&&

Button_3.isEnabled

Multiple comparisons where any of
the values must be TRUE

(OR logic)

Button_1.isEnabled ==

Button_2.isEnabled

||

Button_3.isEnabled

Table 8.2 Constructions that Result in a Boolean Value

BI Action Language

267

8.1

Assignment Statements

Assignment statements assign values to variables. There are two formats
to assign a value variable, as described in Table 8.3: a format for a global
variable and another format for a local variable. For local variables you
need to define the variable first with the VAR statement. For the global
variable this isn’t necessary, as you already defined the global variable in
the application component.

Assigning values to variables in the application is very useful for storing
values that you can reuse later. Variables can also be used extensively
when calculations have to take place in the application. For example,
you can pull the numbers from the components and store them in vari-
ables. Then perform the calculation and, finally, store the result in
another variable and assign the value back to another component.

Doing it like this, step by step, helps you keep an overview of the code,
making it very easy to read by reducing the complexity of each line.

8.1.2 Expressions

An expression is a combination of variables, component values, and sub-
expressions that together result in a value. Value results of an expression
have a type, which indicates the format of the result (for example, string
or integer). If an expression is used to produce a result that is used in
another statement, that result type must match the requirement of that
statement.

OperatorsWith operators you can combine several arguments into one result
value. Table 8.4 describes all the operators that are supported in BIAL.

Context Format

Variable is not yet defined. VAR <variable_name>

= <Expression>;

Variable is defined. <variable_name>

= <Expression>;

Table 8.3 Assigning a Value to a Variable

Scripting for Interactivity

268

8

If an expression is to be used as an argument for a component method,
the type of the expression must match the required expression for the
component method.

Types of
expressions

Table 8.5 describes the expression types.

Operator Description Result
type

Example

+ Concatenates String “foo” + “bar”

+ Adds two values Integer,
float

45 + 12

- Subtracts two values Integer,
float

45 – 12

* Multiplies two values Integer,
float

5*7

/ Divides one value by another Integer,
float

8 / 2

== Checks if both values are equal Any “A” == “A”

!= Checks if both values are not equal;
this gives the opposite result of ==

Any “A” != “A”

&& Results in True when the expression
to the left and right both result in
True

Boolean “A” == “A”

&&

“B” == “B”

|| Results in True when either the
expression to the left or to the right
results in True

Boolean “A” == “B”

||

“B” == “B”

! Turns the Boolean result around; if
the result is True, it will be set to
False; if the result is False, it will
be set to True

Boolean ! “A” == “B”

Table 8.4 Supported Operators in BIAL

BI Action Language

269

8.1

8.1.3 Script Variables

Script variables are used to store values for later use. Variables can be
used in a number of ways, for example, storing results for calculation,
keeping a tab on the current state of the application, and holding values
that are used at several points in the application.

Like expressions, script variables are of a certain type depending on the
assigned value. These types are the same as the types for expressions,

Expression type Description

Primitive types These types are the basic types such as:

� Boolean: True, False

� String: “foobar”

� Float: 123.45

� Integer: 123

� Primitive types are also arrays. The following values
are stored in a variable:

� String array: [“foo”,”bar”]

� Integer array: [14,15]

� JSON: {“key”; “value”}

BI types These are special types such as data source alias,
dimension, and measure, which are often combinations
of primitive types to help you to enter the appropriate
input in the component methods.

Component types These are components. For example, Button, Page-

book, List Box, and Image.

Enum An Enum is basically a set of values. Enums are BI
types. A value is written as:

<EnumType>.<EnumValue>

Examples are the components themselves, which in a
sense are expression types. For example, the Applica-

tion component has methods, and if you want to
address them, you write:

Application.getinfo

Table 8.5 Expression Types

Scripting for Interactivity

270

8

which were described in Table 8.5. If you want to use a variable as a
parameter for a method, the variable type must match the parameter
type.

Two kinds of script
variables

There are two kinds of script variables:

� Local variables
These are variables that are defined in a local script and cannot be
used in other places. These kinds of variables are useful if you want to
compute a result and need a place to store a temporary value. A local
variable is defined by adding the following line:

var <variable> = <expression>;

The variable type is determined by the result of the expression. Local
variables can be preferred over global variables if you want to per-
form only a local action. Using a local variable ensures that you do not
alter something that will hurt another part of the application, as the
local variable value disappears when the script in that component has
ended. Using the same local variable name in another component
does not result in an overlap.

� Global script variables
Global variables can be used in every script in your application. Glo-
bal variables are used for storing values that will be used in multiple
parts of your application. Constant values can be held in global vari-
ables; the maintenance of these values is less time-consuming. Addi-
tionally, a global variable can be defined as a URL parameter. If you
set a global variable as a URL parameter, it is possible to add this vari-
able as a parameter in the URL when someone calls the application.
The value in the parameter will be stored in the variable.

8.1.4 Calling the Event Handler

Event handlers are placeholders for scripting and are defined for each
component; for example, for a Button component, the handler event is
On Click, and for the Application component, it is On Startup. When
the handler is triggered, the application will run the script that has been
entered.

Scripting for Interactivity

272

8

In this screen, you can type statements as described in Section 8.1.1.
When you are done typing, click OK. If you do not wish to save the
script, click Cancel.

In this section, we’ll describe some essential functionalities of the Script
Editor. Understanding these functionalities will be instrumental when
you write your own script.

8.2.1 Using the Content Assistance Screen

Content Assistance When you are entering script lines, you can use the (Ctrl)+(Space) short-
cut at any time. The Content Assistance screen that appears will give
you suggestions on how to continue writing code—it knows which con-
tinuations make sense, and will offer suggestions that are possible based
on the script you already entered. For example, if you have already
entered a data source alias name, the context-sensitive help will know
this and propose specific data source methods (Figure 8.3).

If, in this case, you select the .getData method, you can press (Ctrl)+
(Space) again, and you will see that the Content Assistance screen gives
you new options (Figure 8.4). Because the value in our example can be
derived in multiple ways now, all the components show up in the Con-

tent Assistance screen.

Figure 8.2 Script Editor Screen

Scripting for Interactivity

274

8

The predefined statements in the New Statement Wizard are helpful for
building more complex statements in a wizard-like way. To see an exam-
ple of how to use the New Statement Wizard, follow the steps below.

1. Click New Statement Wizard. A screen opens where you can select a
predefined statement.

2. You can choose from the statements in Figure 8.6. Choose Clear Filter.

Select parameters 3. You are now a step further in the New Statement Wizard and can
select parameters as shown in Figure 8.7.

4. For the Clear Filter statement, select a data source for the Data

Source Alias component, as well as a dimension.

Figure 8.5 New Statement Wizard in the Content Assistance

Figure 8.6 Select a Predefined Statement

Creating a Script

275

8.2

5. Pressing (Ctrl)+(Space) or clicking the browse button automatically
shows the available dimensions in the method for the Data Source

Alias component.

6. Select DS_THEMEREALESTATE as the data source alias and
0CALYEAR as the dimension. On the bottom of the screen, you can
see the script code taking shape (Figure 8.8).

7. Click finish to close the wizard.

Figure 8.7 Select Parameters

Figure 8.8 Parameters Filled

Scripting for Interactivity

276

8

You can now see that the script line DS_THEMEREALESTATE.clearFil-
ter("0CALYEAR"); has been added to the Script Editor.

IF – IF Predefined Statement

IF – IF block Another helpful option in the Content Assistance screen is the if – if
block, which you can find just below New Statement Wizard (refer
back to Figure 8.5). When you select this option, the following code is
automatically inserted in the editor:

if (condition) {
if_statements

}

Using this predefined statement puts the structure of the IF – IF state-
ment in place. By double-clicking either condition or if_statements,
you select that variable, and you can fill it with script code by using the
(Ctrl) + (Space) shortcut (Figure 8.9).

8.2.2 Creating Predefined Statement Templates

Add your own
predefined
statement
templates

Design Studio’s Script Editor has only two predefined statement tem-
plates. Fortunately, you can add your own predefined statements in the
Scripting Templates menu. Adding new predefined statements can

Figure 8.9 Using Predefined Statements

Creating a Script

277

8.2

increase your scripting speed, especially for those statements you use
often. Follow these steps:

1. Go to Preferences in Tools.

2. Open the Scripting segment and click Templates.

3. In the screen (Figure 8.10), you see the currently predefined state-
ments.

4. In the Context column, you see two statement templates, which you
saw when you used the New Statement Wizard earlier.

5. The JSON template is only visible when you use the (Ctrl)+(Space)
shortcut on a place in the code where a json argument is needed (Fig-
ure 8.11).

JSON6. For this example, you want to create a predefined JSON list of Amer-
ican states so you don’t have to type them all. Click New.

Figure 8.10 Predefined Statements Screen

Scripting for Interactivity

278

8

7. Fill in the fields as shown in Figure 8.12.

8. Use the context JSON so you can insert these as a list.

9. Click OK.

10. You now see the states in the predefined statement templates (Figure
8.13).

11. Now when you go to the Script Editor, you can type in sample code
to get data from a data source (Figure 8.14).

Figure 8.11 Using a JSON Predefined Statement Template

Figure 8.12 Template Code

Creating a Script

279

8.2

12. The end result is that the code from the predefined statement tem-
plate is inserted into the script and looks like Figure 8.15.

Figure 8.13 New Predefined Statement Ready

Figure 8.14 Using the New Predefined Statement

Scripting for Interactivity

280

8

8.2.3 Finding Script Errors

Script errors Even after you’ve built your script, the Script Editor can still help—it
identifies errors in your script by putting a marker at the beginning of
the line (Figure 8.16). It also underlines the error with a red squiggle
line.

When you hover your mouse pointer over the marker, the editor gives
more information about the error. In Figure 8.17, you can see how the
application delivers more information about the error. Even when there
are multiple errors in the line, the Script Editor gives details about all the
errors.

In this example, you can see that the variable VarMaxGust is of type
float, but the API for the method .setBottomMargin requires a value of

Figure 8.15 Script Editor after Inserting Predefined Code from the Template

Figure 8.16 Syntax Error

Figure 8.17 Syntax Error Explained

Scripting for Interactivity

282

8

The script line would look like this:

Convert.floatToString(123456.78, "###,###,##0.00 EUR");

In addition, if you have variables or parameters of different types and
you need to change them so they will align, you use the Convert com-
ponent to achieve this. You can view this object as a toolkit to handle all
kinds of values. Table 8.6 lists all the Convert methods.

8.3.2 Data Source Alias Component

Navigate and
filter data

The Data Source Alias component has a lot of methods to navigate and
filter the data (Table 8.7). In addition, you can assign a data source to the
alias at runtime, meaning you can switch between the queries or views
the data source is referring to, based on the interaction with the user.

Method Description

floatToString Converts a float number type value to a
string and applies a formatting pattern.
English local is standard, but you can apply
your own formatting in a parameter.

floatToStringUsingLocale Converts a float number type to a string and
applies the local formatting pattern. You
can set the number of decimals.

stringLength Returns the length of the string type value
given in the parameter.

stringToFloat Converts a string type to a float number.

stringToFloatUsingLocale Converts a string type to a float number
using the local formatting pattern.

stringToInt Converts a string type to an integer.

Substring Returns a substring of the original string
based on the start and end positions set in
the parameters.

Table 8.6 Convert Methods

Methods

283

8.3

Method Description

assignDataSource Assigns a new data source to the alias. You
can select a system, a query, and whether it
has to load immediately.

assignHierarchy Assigns a hierarchy to a dimension.

clearAllFilters Removes all filters on all dimensions.

clearFilter Removes filter for dimension.

getConditionalFormatValue Gives the conditional format applied. 0 is no
format. 1-9 is the priority.

getConditionalFormat-
ValueExt

Gives the conditional format with the use of
external format keys.

getData This results in the value of a single data cell
from the dataset. A data cell holds informa-
tion about the value, formatted value, scal-
ing factor, and unit of measure.

getDataAsString This results in the return of a single data cell
from the dataset with external member keys.

getFilterText This method results in the filter value of the
filter in the dimension passed in the parame-
ter.

getFilterText Returns the filter value of a dimension. As
this method returns the text of the value,
you use this for displaying the filter.

getInfo Returns data source information, for exam-
ple, the key date or the technical name.

getMemberList Returns a list of dimension members.

getStaticFilterExt Returns the static filter value of a dimension.

getStaticFilterText Returns the static filter value of a dimension.
As this method returns the text of the value,
you use it for displaying the filter.

getVariableValueExt Returns the value of the variable in the exter-
nal key format.

Table 8.7 Data Source Alias Methods

Scripting for Interactivity

284

8

getVariableValueText Returns the value of the variable. Use this
method to display the value of the variable.

loadDataSource Loads the assigned data source.

moveDimensionAfter Adds the dimension after another dimension
in the data source.

moveDimensionBefore Adds the dimension before another dimen-
sion in the data source.

moveDimensionToColumns Moves the dimension to a selected column
in the data source.

moveDimensionToRows Moves the dimension to a selected row in
the data source.

reloadData Reloads the data from the source. When the
source data changes, this is a useful method.

removeDimension Removes the dimension from the row or col-
umn.

setFilter Sets a filter for a dimension in the internal
key format. If there is already a filter on the
dimension, that filter is removed.

setFilterExt Sets a filter for a dimension in the external
key format. If there is already a filter on the
dimension, that filter is removed.

setMemberDisplay Changes the member display for a data
source dimension. Options are KEY, TEXT,
KEY + TEXT, or TEXT + KEY.

swapDimensions Two dimensions change place. This only
works when at least one of the dimensions is
placed in the row or column.

unassignHierarchy Unassigns a hierarchy from the dimension.

Method Description

Table 8.7 Data Source Alias Methods (Cont.)

Methods

285

8.3

8.3.3 Application Component

Debug, set query
variables

As you’ll recall from Chapter 7, the Application component is the main
component, and its methods are therefore meant for the main applica-
tion functions. Some methods are used for debugging purposes when
creating messages. There are also methods for setting query variables.
Other methods in the Application component enable applications to
open new URLs, including other Design Studio applications. All the
Application component methods are listed in Table 8.8.

Methods Descriptions

Alert Opens a message box.

createErrorMessage Creates an error message that is visible in the
Message view.

createInfoMessage Creates an info message that is displayed in
the Message view.

createWarningMessage Creates a warning message that is displayed
in the Message view.

getInfo Returns analysis application information.

log This method creates a message in the error
log for analysis. If you have a complex piece
of script and it does not work properly, you
can use this for debugging purposes.

openPromptDialog Opens a dialog box.

setVariableValue Sets query variable values in the internal key
format and executes the data source query
again.

setVariableValueExt Sets query variable values in the external key
format, then executes the data source query
again.

openNewWindow Opens a new browser window with the
specified URL.

Table 8.8 Application Component Methods

Scripting for Interactivity

286

8

8.3.4 Visual Components

Common Methods

Parent class Just as all visual components have common properties, they also all have
common methods. These methods are part of the component class
(described in Table 8.9). As a parent class of all the visual components,
these components inherit the methods of this class.

The methods in this class are useful for changing the size, the location,
and the layout of the objects at runtime.

Method Description

getBottomMargin Gives the bottom margin of the component as long as
Bottom Margin is set to a number (not Auto).

getCSSClass Returns the CSS class that is assigned to the compo-
nent.

getHeight Returns the height of the component as long as Height

is set to a number (not Auto).

getLeftMargin Returns the left margin of the component as long as
Left Margin is set to a number (not Auto).

getRightMargin Returns the right margin of the component as long as
Right Margin is set to a number (not Auto).

getTopMargin Returns the top margin of the component as long as
Top Margin is set to a number (not Auto).

getWidth Returns the width of the component as long as Width

is set to a number (not Auto).

isVisible Returns whether the component is visible (True) or
not (False).

setBottomMargin Sets the bottom margin as long as Bottom Margin is
set to a number (not Auto).

setCSSClass Sets the CSS class of the component.

setHeight Sets the height of the component as long as Height is
set to a number (not Auto).

Table 8.9 Component Methods

Methods

287

8.3

When you use visual components, you will see that they all have these
methods.

Button Component

Get info and
change the state of
a button

The methods of the Button component (Table 8.10) allow you to get
information about the Button component and change its state. Using a
combination of .getEnabled and .setEnabled, for example, allows you
to construct an IF THEN ELSE statement that allows the user to toggle the
status of a Button component.

setLeftMargin Sets the left margin of the component as long as Left

Margin is set to a number (not Auto).

setRightMargin Sets the right margin of the component as long as
Right Margin is set to a number (not Auto).

setTopMargin Sets the top margin of the component as long as Top

Margin is set to a number (not Auto).

setVisible Sets the visibility of the component based on the
parameter value (True or False).

setWidth Sets the width of the component as long as Width is
set to a number (not Auto).

Method Description

Table 8.9 Component Methods (Cont.)

Method Description

getText Gives the text that is displayed on the Button compo-
nent.

getEnabled Tells whether the Button component is enabled.

setText Sets the text that is shown on the Button component.

setEnabled Sets the Button to enabled or disabled depending
on the parameter value.

Table 8.10 Button Component Methods

Scripting for Interactivity

288

8

Chart Component

Manipulate charts The Chart component methods (Table 8.11) allow you to manipulate
the Chart component. You can set the kind of Chart component, the
totals, the swapping axis, and perform all kinds of other manipulations.
One particularly interesting method is the .getSelectedMember method.
With this you can use a data point on the Chart component clicked by
a user. For example, when a user clicks on a value in a graph, you can
use this interaction to set a filter in a data source. This is helpful when
you want to present details about the selected value in a Crosstab com-
ponent.

The script line to do this is:

DS_DETAIL.setFilter("0CALYEAR",
GRAPH.getSelectedMembers("0CALYEAR"));

Checkbox Component

Status and value of
component

The methods for the Checkbox component (Table 8.12) return informa-
tion about the current status of the component as well as the value of the
Checkbox (selected True or False). The Checkbox component script can

Method Description

getChartType Gives the name of the Chart component.

getSelectedMember Gives you information about the selected data point.
With the parameter dimension, you define the dimen-
sion value you want to see.

isVisible Shows the Chart component’s visibility status.

setChartType Changes the Chart component type.

setStyle Changes the Chart component style.

setVisible Sets the Chart component’s visibility.

showTotals Shows or hides (sub)totals.

swapAxes Swaps the axes as they appear in the data source for a
different chart perspective.

Table 8.11 Chart Component Methods

Methods

289

8.3

also be useful to set the value of the Checkbox component based on the
state of the application.

Example to show
the state of the
data

Let’s consider an example where you want to let the user know that the
data is up to date. In this case, you can insert a Checkbox component
that is selected if the data was refreshed the previous night. You use the
data source key date, which is set to today, and compare it to the last
refresh date. If the dates are the same, then the Checkbox is selected,
informing the user that everything is up to date. Additionally, you can
use a CSS class assignment to create an alert when things are not up to
date.

if (DS_THEMEREALESTATE.getInfo().lastDataUpdateMaximum == DS_
PRICEHISTORY.getInfo().keyDate) {

CHECKBOX_1.setChecked(true);
CHECKBOX_1.setCSSClass("NoAlert");

} else {
CHECKBOX_1.setChecked(false);
CHECKBOX_1.setCSSClass("Alert");

}

Method Description

getText Returns the text with the Checkbox component.

isChecked Returns True if the Checkbox component is selected
or False if the Checkbox component is not selected.

isEnabled Returns True if the Checkbox component is enabled.

isVisible Returns True if the Checkbox component is visible.

setChecked Selects the Checkbox component when the parameter
is set to True. Otherwise, the Checkbox component is
not selected.

setEnabled Sets the Checkbox component to enabled when the
parameter is True. Otherwise, it is disabled.

setText Sets the Checkbox component text.

setVisible Shows the component when the parameter is True,
but not when it is False.

Table 8.12 Checkbox Component Methods

Scripting for Interactivity

290

8

Crosstab Component

Value of
component

As with the Chart component, the Crosstab component also has a .get-
SelectedMember method that returns information about the selected val-
ue in the Crosstab component (Table 8.13). The parameter of this meth-
od is the dimension about which you want to receive information. For
example, if your Crosstab component has a dimension Month, and,
based on the selected cell, you want to filter a data source, you use the
following code:

DS_1.setFilter(“Month”,
CROSSTAB_1.getSelectedMembers(“Month”));

Date Field Component

Set or deliver date The Date Field component allows the user to select a date. Methods for
this component deliver or set the date (Table 8.14).

Dimension Filter and Filter Panel Components

Get information
about dimensions

and filters

The methods in the Dimension Filter and Filter Panel components
(Table 8.15) get information about the dimension and the filter, and you
can use this information to apply filters. As the Dimension Filter is a

Method Description

removeSelection If a cell is selected, this method will remove the selec-
tion.

getSelectedMember Provides information about the dimension of a
selected cell.

Table 8.13 Crosstab Component Methods

Method Description

getDate Returns the date.

isEnabled Returns True if the component is enabled.

setDate Sets the date on the component.

setEnabled Allows you to enable or disable the component.

Table 8.14 Date Field Component Methods

Methods

291

8.3

more generic component, it has a method, getDimensionName, to deter-
mine the dimension you are working in. This method is not present in
the Filter Panel component.

Selection Components

The selection components are components where you can select a value
from a list of members. These components are:

� List Box

� Radio Button Group

� Dropdown Box

Determine
selections and
select values

You may recall from Chapter 7 that these components are all part of the
basic components category. Selection components (Table 8.16) are a subset
of this category and are grouped together based on the fact that their
methods allow you to pick a value from a set of values. In other words,
the methods available with these components allow you to determine a
number of possible selections and select a value from those selections.
One of the main uses for this is to collect the selected value with the
.getSelectedValue method and use this value as a parameter for other
actions.

Method Description

Cancel Removes entered filters that haven’t been submitted
yet.

getDimensionName The name of the dimension is returned (only with the
Dimension Filter component).

Submit Applies the filter values that have been entered.

Table 8.15 Dimension Component and Filter Panel Component Methods

Method Description

getSelectedText Returns the text of the selected item. Each item in the
component has a key and an item.

getSelectedValue Gets the selected value key.

Table 8.16 Selection Component Methods

Scripting for Interactivity

292

8

Image Component

Retrieve image
paths and set new

images

With the methods for the Image component (Table 8.17), you can
retrieve the path of the images linked to the Image component and set
new images to the component. You can also view or set opacity.

isEnabled Allows you to enable or disable the component.

setEnabled The component can be set to enabled or disabled with
this method.

setItems Assigns a list of items to the components. If there
were previous items in the list, these items are
removed and replaced with the new items passed in
the parameter.

setSelectedValue Sets the status selected to the item with the specified
key.

Sort Sorts the items in alphabetical order. An optional
parameter can be used to set the list in descending
order.

Method Description

Table 8.16 Selection Component Methods (Cont.)

Method Description

getClickImage Returns the path of the image file that is shown when
clicked.

getHoverImage Returns the path of the image file that is visible when
the mouse hovers over the Image component.

getImage Returns the path of the image file that is initially visi-
ble.

getOpacity Returns the opacity value. 0 is fully transparent; 100 is
fully visible.

setClickImage Sets the image file to show when the Image compo-
nent is clicked.

Table 8.17 Image Component Methods

Methods

293

8.3

Input Field Component

Input free textIn the Input Field component methods (Table 8.18), the application
user can freely write a text. The Input Field methods can be used to set
and retrieve the value and enable or disable the component.

Pagebook Component

Swipe or drag
pages

The Pagebook component is a container component that allows you to
swipe or drag between pages. The methods in this component (Table
8.19) allow you to retrieve the current page or move to another page
based on the name or index number of the page.

setHoverImage Sets the image file to show when the mouse hovers
over the Image component.

setImage Sets the main image.

setOpacity Sets the opacity of the image. 0 is fully transparent;
100 is fully visible.

Method Description

Table 8.17 Image Component Methods (Cont.)

Method Description

getValue Returns the value that is entered in the Input Field

component.

isEnabled Returns True if the component is enabled or, other-
wise, False.

setEnabled Sets the component to enabled or disabled.

setValue Sets the value of the Input Field component.

Table 8.18 Input Field Component Methods

Methods Description

getSelectedPage Returns the name of the currently selected page.

Table 8.19 Pagebook Component Methods

Scripting for Interactivity

294

8

Panel Component

Organize other
components

The Panel component is a basic container that helps you to organize
other components. Therefore, the Panel component has only the
.onClick method. A handler method allows you to run the script in a
component from another component.

Popup Component

The Popup component is a screen that shows on top of the application.
The methods (Table 8.20) are used for checking if it is visible and show-
ing or hiding the component.

Tabstrip Component

Navigate between
pages

The Tabstrip component is a container component that allows you to
navigate between pages. The methods (Table 8.21) allow you to retrieve
the current page and go to another page.

getSelectedPage-
Index

Returns the index value of the selected page. If the
first page is currently selected, then the index is 0.

setSelectedPage-
ByName

Selects the page by passing the name of the page in
the parameter.

setSelectedPage-
Index

Selects the page by passing the index number of the
page in the parameter.

Methods Description

Table 8.19 Pagebook Component Methods (Cont.)

Methods Description

hide The Popup component is not visible anymore.

isShowing Returns True if the Popup component is currently visi-
ble.

show The Popup component is visible.

Table 8.20 Popup Component Methods

Examples: Building Navigation Items

295

8.4

Text Component

Set text as visible
to user

The Text component shows text that is visible for the user. The methods
(Table 8.22) can set the current text or look at the current text. Com-
bined with the common layout methods described earlier in this section,
the Text component is very useful for applying layout changes to an
application based on interaction with the user.

8.4 Examples: Building Navigation Items

In this section, we will set up navigation items so the user can move
through the application. We will be using different components in com-
bination with scripts and CSS to reflect the choices the user makes in the
application.

Method Description

getSelectedTab Returns the name of the currently selected tab.

getSelectedTab-
Index

Returns the index value of the selected tab. If the first
page is currently selected, then the index is 0.

setSelectedTab-
ByName

Selects the tab by passing the name of the page in the
parameter.

setSelectedTab-
Index

Selects the tab by passing the index number of the
page in the parameter.

Table 8.21 Tabstrip Component Methods

Method Description

getText Returns the text currently in the Text component.

setText Sets the text that is shown in the Text component.

Table 8.22 Text Component Methods

Scripting for Interactivity

296

8

8.4.1 Menu Navigation

Text
component,

Pagebook
component,
CSS classes

In the first example, we will build a menu navigation. We will use Text

components in combination with CSS classes to build navigation But-

ton components to navigate through the screens of a Pagebook compo-
nent in the application. Additionally, we will highlight the last selected
Button component so the user can see where he is in the application.

As you can see in Figure 8.18, Button 3 is selected, and the third screen
of the Pagebook component is selected.

Figure 8.18 Menu Screen

Define the CSS
classes

To create such a menu structure, you first define two CSS classes. For
this purpose, we made a CSS file that we have attached to the applica-
tion’s Custom CSS property. In this file, we have defined two CSS
classes: one for the standard, unselected button and one for the selected
button.

In Notepad create a file with the extension .css and insert the following
lines:

.button
{
border:2px solid #a1a1a1;
padding:10px 30px;

Examples: Building Navigation Items

297

8.4

background:#dddddd;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
box-shadow: 5px 5px 2px #666666;
font-size:150%;
font-weight:500;
}

.buttonselected
{
border:2px solid #a1a1a1;
padding:10px 30px;
background:#cccccc;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
box-shadow: 5px 5px 2px #666666;
font-size:150%;
font-weight:700;
}

In Figure 8.18, you can see that, with this CSS code, we have created
rounded buttons with shadows.

Add a scriptNow, for each Button component, we will add a script. The first part of
the script is to set all the Button components to the standard style. The
second part is to select the Pagebook page. The third and final part is to
set the appearance of the Button component to the style of a selected
Button component.

In the code below, we show the script code that has to be attached to
Button 3.

//Reset all the buttons to their normal style
TEXT_1.setCSSClass("button");
TEXT_2.setCSSClass("button");
TEXT_3.setCSSClass("button");
TEXT_4.setCSSClass("button");
//Select the right pagebook
PAGEBOOK_1.setSelectedPageIndex(0);
//set the third button to selected status
TEXT_1.setCSSClass("buttonselected");

Scripting for Interactivity

298

8

You can use this code for each button. The index number of the
PAGEBOOK_1.setSelectedPageIndex(2); line should be changed to the
right number. In addition, the final line should be altered to ensure that
the right button receives the buttonselected format.

8.4.2 Popup Navigation

Change the
behavior of an

application

In this section, we will build a popup menu where a user can change the
behavior of the application. In the popup menu, the user will be able to
select the currency, the unit of measure, and the color settings of the
application. In the script, we will use BEx variables to enforce the cur-
rency and unit of measure settings for the data sources. For the color set-
tings, we will use CSS classes that we assign based on the user’s choice.
As an additional technique, we will use an extra component as a place-
holder for the script to assign a new CSS class to all the components.
This extra component will then be called from other components by
using the event handler method.

Put scripting in
separate

component

As you see in Figure 8.19, the popup screen allows you to set the cur-
rency, the measurement unit, and a color scheme for the application. As
resetting all the CSS classes is a lot of work, we put all the scripting in a
separate component that is added only for holding the script. Addition-
ally, we used a global variable to store the value of the currently selected
color scheme so we can reuse that value for any color scheme selected.

First we want to use a Button component to toggle the Popup compo-
nent. If the Popup is hidden, the Button component should make it vis-
ible, and when the Popup is visible, clicking the Button component
should hide the Popup.

Figure 8.19 Popup Screen

Examples: Building Navigation Items

299

8.4

In the script for the Button component add the following code:

if (POPUP_1.isShowing()) {
BUTTON_1.setText("Show Settings");
POPUP_1.hide();

} else {
BUTTON_1.setText("Hide Settings");
POPUP_1.show();

}

This code looks at the Popup component and performs an action based
on the its current state.

BEx variablesFor the currency and unit of measure setting, we are going to use BEx
variables that we will set based on the user’s choice. Setting a BEx vari-
able automatically leads to a reload of all the BEx queries that use that
variable.

In the first Dropdown Box component, we put the following code in
the On Select handler. When the user changes the selected value, the
new selected value will be used to change the BEx variable ZCURVAL,
which is used for selecting the currency.

APPLICATION.setVariableValue("ZCURRVAL", DROPDOWN_1.getSelect-
edValue());

In the second Dropdown Box component, a similar script code will
change the BEx variable ZMEASVAL. This will change the unit of measure.

APPLICATION.setVariableValue("ZMEASVAL", DROPDOWN_2.getSelect-
edValue());

In the Radio Button Group component, we can select a color scheme
for the application. In this example we have two settings: sienna and
basic gray.

In the CSS file we have attached to the application property Custom

CSS, two classes are defined:

.sienna
{
background-color:#A0522D;
border:4px solid #a1a1a1;
border-radius:25px;
}

Scripting for Interactivity

300

8

and

.basicgray
{
background-color:#D3D3D3;
border:4px solid #a1a1a1;
border-radius:25px;
}

In the Application component we have defined a global variable color-
scheme as a string with the initial value sienna.

User controls color
scheme

When the application starts, the CSS classes of all components should be
set to the initial setting. When the user alters the value of the color
scheme in the Popup component, the CSS classes should be set to reflect
that choice.

As setting the CSS class for all components calls for a lot of code, we do
not want to write and maintain all those lines in two places. In the appli-
cation On Startup handler, we see only this code:

CODE_COLORSCHEME_SETTER.onClick();

When the Radio Button Group component value changes, we only see
two lines of code; the first resets the value of the global variable, and the
second addresses the colorscheme setter:

ColorScheme = RADIOBUTTONGROUP_1.getSelectedValue();
CODE_COLORSCHEME_SETTER.onClick();

The component with the name code_colorscheme_setter is a Text com-
ponent that is only used to hold the script for changing the CSS script. It
will use the variable value to set all the CSS values.

As there are different CSS classes for buttons, texts, etc., concatenation is
used to address the different types of classes.

// Sets all the components CSS class to the desired
// color scheme
//Buttons
BUTTON_1.setCSSClass(ColorScheme + "_button");
BUTTON_2.setCSSClass(ColorScheme + "_button");
BUTTON_3.setCSSClass(ColorScheme + "_button");

Examples: Building Navigation Items

301

8.4

BUTTON_4.setCSSClass(ColorScheme + "_button");
BUTTON_5.setCSSClass(ColorScheme + "_button");

//Text boxes
BUTTON_1.setCSSClass(ColorScheme + "_text");
BUTTON_2.setCSSClass(ColorScheme + "_text");
BUTTON_3.setCSSClass(ColorScheme + "_text");
BUTTON_4.setCSSClass(ColorScheme + "_text");
BUTTON_5.setCSSClass(ColorScheme + "_text");

By using the variable, we ensure that we only have to put this code in
one place. In addition, if there should be a third color scheme choice,
this can be easily implemented by adding classes to the CSS file and add-
ing another selection option to the Radio Button Group component.

8.4.3 Navigating between Applications

In this third navigation example, we will move outside the application.
Additionally, we will make it possible to pass parameter values from
outside the application. These parameters will influence the settings we
have chosen in the settings screen in Figure 8.19. We also will look at
how to use global variables to make things easier for ourselves.

Define global
variables

When you want an application to accept the parameter values from out-
side the application, you first have to define global variables. As you can
see in Figure 8.20, we now have three additional variables in our exam-
ple, but these are set as URL parameters.

In our On Startup code, we will use these global variables to set the color
scheme and our two query variables.

Figure 8.20 Global Variables as URL Parameters

Scripting for Interactivity

302

8

APPLICATION.setVariableValue("ZCURRVAL", X_Curr);
APPLICATION.setVariableValue("Z_MEASVAL", X_meas);
ColorScheme = X_Color;

CODE_COLORSCHEME_SETTER.onClick();

As you can see, the code uses the parameter values to set the variable
values on the application itself. The CSS classes will then be set with the
value passed in the parameter. Our application is now able to use the
parameters to change the initial settings.

We will now look at what you need to do in another application—let’s
refer to it as App2—to open our initial application (App1) and pass the
parameter values. We will assume that App2 has the same popup screen
to specify the setting values.

To start App1, App2 has to open a new window with the URL of App1.
This URL consists of three parts: the general server address, the unique
CUID of the application, and the parameters.

Link to multiple
applications

For easier maintenance, we will first set up variables for the server name
and for the application CUID in App2. In Figure 8.21, you can see that
we store every value in a global variable, because this gives us a lot of
flexibility and ease of maintenance. Based on selections in the applica-
tion, we now can link to several applications. As we will see later, the
code to actually open the application is easily readable with the use of
these global variables.

We can now set up a Button component (or another component) in
App2 with the following script in the event handler:

Figure 8.21 URL Values Stored in Global Variables

Examples: Manipulating Data Output

303

8.5

APPLICATION.openNewWindow(ProductionServer + documentline
+ Application1 +
"&X_Curr=" + DROPDOWN_1.getSelectedValue() +
"&X_meas=" + DROPDOWN_2.getSelectedValue() +
"&X_color=" + RADIOBUTTONGROUP_1.getSelectedValue()

);

This code will result in opening App1 with the settings passed in the
parameters.

8.5 Examples: Manipulating Data Output

In this section, we will use scripts to work with the data. We will change
the layout of the data, add filters, and change data sources. All this is
connected to buttons in the application so the user can perform complex
navigations in the data with just one click of a button.

8.5.1 Adding a Filter

Selecting by monthIn the application (Figure 8.22) we see weather data for over 100 years.
On the left is a List Box component with the 12 months of the year.
When we click one of these months, the Crosstab component on the
right will only show the selected month.

List Box
component

We will build this interactivity in two parts. In the first part, at the star-
tup of the application we will fill the List Box component with the

Figure 8.22 Filtering with the List Box Component

Scripting for Interactivity

304

8

selectable items. When we have completed the first part, we will con-
tinue by adding a script to use the selected item in the List Box compo-
nent to filter the data that is presented in the Crosstab component.

In the application’s On Startup event we will put a script that will popu-
late the List Box component with items based on the data in the data
source. If, for example, there are only three months of data available in
the data source, the List Box component will only show those three
months. The reasoning here is that each of those three months is a valid
choice, i.e., resulting in a visible dataset on the right instead of coming
up without any data.

The script line at the application’s On Startup handler is:

LISTBOX_1.setItems(DS_
1.getMemberList("0CALMONTH2", MemberPresentation.INTERNAL_
KEY, MemberDisplay.TEXT, 15));

Let’s have a closer look at this script: first the method that allows us to
fill the List Box component with item values, and then the method that
results in a set of items.

LISTBOX_1.setItems(ITEMLIST);

The List Box component method is used to fill the component with the
items. This can be a hard-coded list, but in this case we want to use a
data source to populate the component.

DS_1.getMemberList("0CALMONTH2", MemberPresentation.INTERNAL_
KEY, MemberDisplay.TEXT, 12)

Data source
method

The data source method is a bit more complicated, as there are more
parameters to fill. First we set the dimension that holds the items to pop-
ulate our List Box component items. In this case, it is the field holding
the calendar months. Next we set the key values. Those are the values
that the List Box component will pass to other components when we
use the getselectedvalue method. The third parameter determines how
we want to show the data to the user—i.e., the text. Finally, we tell the
system the maximum number of items we want to show in the List Box

component. Because there are 12 months in a year, we set this number
to 12.

Examples: Manipulating Data Output

305

8.5

Now that we have the List Box component filled with the data, the next
step is to invoke the script to react to a user click and use the selected
value to place a filter on the data source.

DS_1.setFilter("0CALMONTH2", LISTBOX_1.getSelectedValue());

When we select a value in the List Box component, the script will
respond by applying a filter on the data source with the selected value.

Finally, we want the user to be able to reset the filter—in case he has
already selected a month but wants to navigate back to the whole year.
That reset button has one script line:

DS_1.clearFilter("0CALMONTH2");

This method clears the filters of the 0CALMONTH2 dimension. It is also
possible to clear all the filters on all the dimensions at once. To do so,
use the following line:

DS_1.clearAllFilters();

8.5.2 Adding a Cascading Filter and Drilling Down to a More
Detailed Level

Filter by dayIn this section we will take the filter option one step further. Instead of
months, decades will be shown in the List Box component. In Figure
8.23, you see how this application allows the user to first select a
decade, then a year, then the month, and, finally, the day.

Figure 8.23 Using Cascading Filters to Drill Down

Scripting for Interactivity

306

8

When a day is selected, the maximum temperature for that day will
become visible. This type of interaction can be very useful to navigate
through large dimensions step by step.

As with the previous example, we first have to populate the first List

Box component. This is almost the same code as in the application’s On
Startup handler.

LISTBOX_2.setItems(DS_1.getMemberList("ZDS_TDATE__
ZDECADE", MemberPresentation.INTERNAL_
KEY, MemberDisplay.TEXT, 15));

However, in these List Box components, more script lines are added.
There are a couple of additional tasks that the script now has to perform:

� Remove lower-level filters, as they would result in no available data
in combination with a new decade.

� Set the month and day List Box component to Disabled, so that, after
a decade is selected, the year has to be selected.

� Set the new filter on the data source.

� Populate the year List Box component.

� Make any temperature shown in the List Box component disappear.

DS_1.clearFilter("0CALYEAR");
DS_1.clearFilter("0CALMONTH");
DS_1.clearFilter("0CALDAY");

DS_1.setFilter("ZDS_TDATE__ZDECADE", LISTBOX_2.getSelected-
Value());

LISTBOX_3.setItems(DS_
1.getMemberList("0CALYEAR", MemberPresentation.INTERNAL_
KEY, MemberDisplay.TEXT, 10));
LISTBOX_3.setEnabled(true);

// lower level listboxes not available anymore

LISTBOX_4.setEnabled(false);
LISTBOX_5.setEnabled(false);
TEXT_1.setText("");

Examples: Manipulating Data Output

307

8.5

This code will clear the day, month, and year filter. Next it will set a fil-
ter on the decade based on the selected value. When the filter is applied,
the List Box component for the years will be populated. As there is only
one decade left in the dataset, there will be a maximum of 10 years in
the List Box component.

After populating the year List Box component, the month and day List

Boxes are disabled. (Instead of disabling them, you can also set the visi-
bility to false to remove them entirely from sight until they are
needed.) Finally, in cases where there is already a temperature shown,
the temperature text is cleared.

The code for the next three List Box components is much like the first
one. The difference is that other List Box components get populated and
fewer have to be disabled. The List Box component for years will popu-
late the month List Box component, while the month List Box compo-
nent will populate the day List Box component. Finally, the day List

Box component will set the last filter and edit the text of the Text Box

component.

DS_1.setFilter("0CALDAY", LISTBOX_5.getSelectedValue());
TEXT_1.setText(DS_1.getDataAsString("ZA_TX", {}));

8.5.3 Moving Dimensions and Measures

Change views on
data

After applying filters to the data source, we want to add flexibility to the
navigation by allowing the user to change the view on the data. In this
example, we will set up an application where you can change dimen-
sions and measures by clicking the appropriate buttons (Figure 8.24).
We will move dimensions, select measures, and finally assign a hierar-
chy. All these actions together provide a very broad set of tools available
to help the user to navigate through the data.

In this example, the user can select a dimension and perform an action
that will result in a different view on the weather data in a Crosstab

component. Furthermore, he can select up to four measures.

Scripting for Interactivity

308

8

For Remove Dimension, we take the value of the upper List Box com-
ponent. In the Remove Dimension Button component’s On Click event
handler, we set the following line:

DS_WEATHER.removeDimension(LISTBOX_6.getSelectedValue());

In each Button component, we will set the appropriate script to per-
form the action. For the second Button component, Move Dimension

to Row, the script is as follows:

DS_WEATHER.moveDimensionToRows(LISTBOX_6.getSelectedValue());

For the third Button component, Move Dimension to Column, the
script is as follows:

DS_WEATHER.moveDimensionToColumns(LISTBOX_6.getSelected-
Value());

For the fourth Button component, Move Dimension Before, the script
is as follows:

DS_WEATHER.moveDimensionBefore(LISTBOX_6.getSelectedValue(),
LISTBOX_7.getSelectedValue());

Figure 8.24 OLAP Application

Examples: Manipulating Data Output

309

8.5

This statement will put a dimension in front of the dimension selected
in the lower List Box. If the selected dimension in the List Box is not in
the current view of the data source, then the statement is ignored.

Finally, for the fifth Button component, Swap Dimensions, we also
need to select a second value in the lower List Box component. To be
able to swap, one of the selected dimensions should be in the row or col-
umn of the data set.

DS_WEATHER.swapDimensions(LISTBOX_6.getSelectedValue(),
LISTBOX_7.getSelectedValue());

In addition, we want to be able to select one or more measures. The
selected measures should be shown in the Crosstab component. With
four measures, we have a total of 16 possible configurations. We will
use global variables, as shown in Figure 8.25. As you can see, only the
first measure is already a value. This is also the initial setting of the data
source.

When the user selects one of the Checkbox components, the global vari-
able belonging to that component is filled with the appropriate value.
When the user deselects one of the Checkbox components, the value is
removed when deselected.

In the Checkbox components, we insert the following code. The listing
below is the script attached to the second Checkbox component.

if (CHECKBOX_2.isChecked()) {
Measure2 = "ZA9SM00000000000000000005";

Figure 8.25 Global Variables for Measure Selection

Scripting for Interactivity

310

8

} else {
Measure2 = "";

}
DS_WEATHER.setFilter("0MEASURES0000000000000009",
[Measure1, Measure2,Measure3,Measure4]);

In the other Checkbox components, we insert basically the same code,
but we will be using the other variables in those components. As you
can see, we also have a complicated value as the first parameter of the
method. Luckily, you don’t have to enter this yourself—if you press
(Ctrl)+(Space), you will be able to select the value via the Content Assis-

tance screen.

It is possible to take the measures selection a step further. Instead of four
Checkbox components, we now set up four List Box components. The
layout is as shown in Figure 8.26. We now have the measures grouped
logically so the user can choose one of similar measures. With the choice
None, we also provide the possibility to limit the number of visible
measures.

Instead of the if then code we showed earlier, we assign the selected
value of a List Box component to a global variable. In the application’s
On Startup handler we will populate the List Box component with a
subset of the measures:

DS_3.setFilter("0MEASURES0000000000000009", "ZA_T*");
LISTBOX_8.setItems(DS_3.getMemberList("0MEASURES00000000000000
09", MemberPresentation.INTERNAL_KEY, MemberDisplay.TEXT, 5));

Note that the filter now has an asterisk (*) in the filter value. The data
source will return all the measure names that start with ZA_T.

In the List Box component’s On Select handler we now set the follow-
ing code:

Figure 8.26 More Measure Choices

Examples: Manipulating Data Output

311

8.5

Keyfigure2 = LISTBOX_8.getSelectedValue();
DS_WEATHER.setFilter("0MEASURES0000000000000009", [Keyfigure1,

Keyfigure2,Keyfigure3,Keyfigure4]);

This setup allows us to give the user a choice from a total of 144 config-
urations.

8.5.4 Changing Data Sources

Now we will use a script to change the data source properties. With this
script, we allow the user to switch from one set of data to another by
assigning another query or view to the data source. It is even possible to
switch to another system, as long the system is defined on the SAP
BusinessObjects BI platform.

In this example (Figure 8.27), the user can again look at weather data.
Three backend systems are available: one for the Netherlands, one for
Germany, and one for Belgium. There are also three queries to choose
from: temperature, precipitation, and wind speed.

Load in ScriptFirst we change the property Load in script of the data source’s Prop-

erties view. This is set to True, indicating that we want to load this data
source later, instead of immediately at startup.

In Figure 8.28, we manually set up the values and texts for the available
systems in a Radio Button Group component. In the Value column,

Figure 8.27 Select System and Query Example

Scripting for Interactivity

312

8

we see the unique ID of the definition of the system as it is registered on
the SAP BusinessObjects BI platform. In the Text column the texts are
defined as the user will see them.

In the other Radio Button Group component, we create a similar
setup. Instead of system CUIDs, we use the query name as a key value
and the description as we want the user to see it.

In both Radio Button Group components, we will use the same script.

DS_1.assignDataSource("cuid:"+RGB__
SYSTEM.getSelectedValue(), DataSourceType.QUERY, RGB_QUERY.get-
SelectedValue());
DS_1.loadDataSource();

By passing the List Box component values as parameters in the assigned
data source statement, we connect to the query as defined by the user’s
choices.

By adding choices in the List Box component, we are able to increase
the list of possible queries and/or systems available to the user. We
could even use an Input Field component instead of the List Box and
allow the user to access any query that is available in the system.

8.6 Example: Building a Scorecard

Weather scorecard In this section, we will build a scorecard. In a scorecard, a graphical ele-
ment indicates whether the value is satisfactory, good, or needs
improvement. In Figure 8.29, a weather scorecard has been built with

Figure 8.28 System Choices

Example: Building a Scorecard

313

8.6

five levels of alerts. In the table, the precipitation amount per day is
shown for a week. Based on the amount of rain during the day, an alert
level is set and shown in the form of a circle. Black means no rain, while
white means a lot of rain, with varying shades of gray in between.

For this setup, we need a query that has exceptions defined as a data
source. In an SAP NetWeaver BW BEx query, you can assign exception
values and thus categorize the results. In Figure 8.30, we see the excep-
tions that have been defined in this example. These are the rules that
determine which result leads to which indicator. The layout that is
applied based on this outcome is defined in the Design Studio applica-
tion.

In the application’s On Startup handler, we will define the code to set
the values on the right side of the table in Figure 8.29, and use the

Figure 8.29 Scorecard Application

Figure 8.30 BEx Query Exception

Scripting for Interactivity

314

8

exception values that we receive from the data source to apply the
appropriate layout to the indicators.

First we set the layout. We have uploaded a CSS file and assigned this to
the application’s Custom CSS property with five CSS classes. The classes
are named alert1 through alert5.

We use the following CSS code:

.alert1
{
border:1px solid;
border-color:#000000;
border-radius:25px;
background-color:#000000;
}
.alert2
{
border:1px solid;
border-color:#333333;
border-radius:25px;
background-color:#333333;
}
.alert3
{
border:1px solid;
border-color:#666666;
border-radius:25px;
background-color:#666666;
}

.alert4
{
border:1px solid;
border-color:#999999;
border-radius:25px;
background-color:#999999;
}
.alert5
{
border:1px solid;
border-color:#E6E6E6;

Example: Building a Scorecard

315

8.6

border-radius:25px;
background-color:#E6E6E6;

}
.alert5
{
border:1px solid;
border-color:#E6E6E6;
border-radius:25px;
background-color:#FFFFFF;

}

We use five Text Box components in the application layout, which we
will apply to each one of the CSS classes. The size of the Text compo-
nents is set to 10x10 in the Properties view. Combined with the bor-
der-radius property, this transforms the Text components into circles.
Each class has a different background color, going from white through
several shades of gray to black.

In the application’s On Startup handler, we set the value of the Text

component and then set the layout of the indicator. We have seven indi-
cators and seven values. For each set of indicators and values, we apply
the same steps.

First we set the value of the Text component using the .getdata method
from the data source. In this example, we take the precipitation amount
of one day. The measure in the code is displayed as a CUID. Use (Ctrl)+
(Space) on the measure parameter, and you will see a list of available
measures.

VALUE_1.setText(DS_PRECIPITATION.getDataAsString("4SXP85F39
VXDKO4D5EMHYMBPF", {"0CALDAY": "19910316" }));

Then we set the CSS class of the indicator Text component using the get
ConditionalFormatValueExt method. We use a global variable AlertCSS
to set the first part of the class. The global variable is a string and is
assigned the value alert. We then concatenate this value with the value
returned from the data source.

AlertValue = DS_PRECIPITATION.getConditionalFormatValueExt("4S
XP85F39VXDKO4D5EMHYMBPF", {"0CALDAY": "19910316"});
INDICATOR_1.setCSSClass(AlertCSS + AlertValue);

Scripting for Interactivity

318

8

9. Copy this Button component to the other cells.

10. Change all the names and texts of the other Button components so
that they reflect the number or function they perform.

11. Drag a Radio Button Group component to the left of the main
Grid Layout component. Set the items of the Radio Button Group

as shown in Figure 8.32.

You have now set up the layout of the calculator. You can enhance the
look of the calculator with CSS if you wish. Run the application locally,
review the layout, and adjust it to ensure that every component is visi-
ble.

8.7.2 Adding the Interactivity

Set up global
variables

Before we start building the script itself, we must first set up the global
variables. For now we’ll just put them in. When we explain the steps to
build the script, we will explain how and why the variables are used.
Insert the global variables as shown in Figure 8.33.

We will start with the script that runs when the user clicks on one of the
number buttons. When you type a number for a new calculation, the
result box should be wiped clean and the number should replace the
previous content. Otherwise, the new number should be added to the
right of the result box.

Figure 8.32 Items of the Radio Button Group Component

Example: Building a Calculator

319

8.7

For this script, we will use two global variables. GV_OperatorReset is
checked if it is the start of a new number; GV_CurrentOperator holds the
value of the number that the user is creating.

if (GV_OperatorReset) {
GV_CurrentOperator = "5";

}
else
{

GV_CurrentOperator = GV_CurrentOperator + "5";
}
TXT_RESULT.setText(GV_CurrentOperator);
GV_OperatorReset = false;

If GV_OperatorReset is True, this means the user is starting a new num-
ber. In that case, the value of GV_CurrentOperator is set to the number.
If the user already added numbers, the new number is added to the right
of the variable GV_CurrentOperator.

The Text component will show the current value of GV_CurrentOpera-
tor, and the GV_OperatorReset variable will be set to False, indicating
for future numbers that there is already a number in GV_OperatorReset.

For the digit sign, we need to check if there is already a digit added. We
also have to see if a number is present. Therefore, this code is a little dif-
ferent from the code we used for the numbers. To check for the pres-
ence of a digit, we use the global variable GV_Digit. Note that the check
in the beginning and the edit in the end is more or less the same as the
functionality of GV_OperatorReset.

Figure 8.33 Global Variables for the Calculator Application

Scripting for Interactivity

320

8

if (GV_Digit) {}
else {
if (GV_OperatorReset) {

GV_CurrentOperator = "0.";
}
else
{

GV_CurrentOperator = GV_CurrentOperator + ".";
}
TXT_RESULT.setText(GV_CurrentOperator);
GV_OperatorReset = false;
GV_Digit = true;
}

Now let’s discuss the main steps involved in adding interactivity to the
application.

Starting the Calculation

For the calculation, we use an extra Text component for the sole pur-
pose of holding a script that can be used by the +, the –, the ÷, and the ×
buttons. Name that new component SET_OPERATORS.

Remove
duplication

The Button components only tell the script in the extra Text compo-
nent that they have been clicked. After running the extra script, they set
the variable GV_Operator to indicate which calculation is about to take
place. This way of coding removes a lot of duplication.

Let’s first look at the code in the + button.

SET_OPERATORS.onClick();
GV_Operator = 1;
GROUP_OPERATOR.setSelectedValue("1");

First we ask the other script to handle the previous formula. Then we set
the global variable to 1, indicating that the user now wants to do an
addition formula. Finally, we set the Radio Button Group component
to + so the user can see what he clicked.

It is possible that the user has already started a formula and this is the
second operator. For example, let’s say the user already typed “5+4”
before again clicking the + button. If this is the case, then the calculator
should respond by first calculating 5+4 and then set up the start of the

Example: Building a Calculator

321

8.7

new formula, which consists of the result 9 and the + that the user
clicked.

if (GV_OperatorNumber == 1) {

GV_Operator1 = Convert.stringToFloat(GV_CurrentOperator);
GV_OperatorNumber = 2;

}
else
{

GV_Operator2 = Convert.stringToFloat(GV_CurrentOperator);
CALCULATE_RESULT.onClick();

}
GV_OperatorReset = true;
GV_Digit = false;

If the formula is still incomplete—for example, it is 4 +, and no second
number has been entered—then we do not need to calculate. The vari-
able GV_Operatornumber is responsible for monitoring the status of the
formula in this respect; when the formula is incomplete, the variable
will have the value 1 (as you can see in the IF statement of the listing
above). In this case, no calculation occurs.

In the next part of the code, we raise the value of the variable to 2
because we can do a calculation as soon as we have enough information;
for example, if the formula is 4 +5 +, we want to first calculate the 4 + 5
part. Setting the GV_Operatornumber variable to 2 signals that the for-
mula can be calculated.

If a formula is already set, then we need to calculate the result, put the
result in the result Text component, and set the history text.

The global variables GV_OperatorReset and GV_digit are reset to ensure
that the user can enter a new number. The calculation itself and updat-
ing the history is handled by other components that we will discuss
later.

Setting Up the CE and C Buttons

The CE and C buttons perform different functions. The CE button only
removes the current number of the formula (clear entry). The C button
removes the entire formula and lets the user start with a clean slate.

Scripting for Interactivity

322

8

To build this, the CE script and the C script are a little different. To build
the CE function, we only need to remove the current number. The script
for this looks like this:

GV_CurrentOperator = "0";
TXT_RESULT.setText(GV_CurrentOperator);
GV_OperatorReset = true;
GV_Digit = false;

The variables that we have seen in the number and the digit numbers
are reset to their original state. The text in the result component is set to
0. If there already was a number and operator before this number, it will
remain in place, as there is no script to remove it from the variables.

The C function also looks at an earlier entered number and operator. It
resets anything to ensure a clean slate. The Radio Button Group com-
ponent is also reset, as there is no current operator anymore. The set his-
tory function is addressed to input an empty line. That way the user can
see that he made a new start.

GV_Operator1 = 0.0;
GV_Operator2 = 0.0;
GV_OperatorNumber = 1;
GV_OperatorReset = true;
GV_Digit = false;
GV_Operator = 0;
GROUP_OPERATOR.setSelectedValue("0");
TXT_RESULT.setText("0");
SET_HISTORY.onClick();

The last button we will look at is the equals button. This button will
show a result like the operator buttons, but then wipe the slate clean so
that the user can restart creating formulas. As the C button already per-
forms the clean slate function, we will not retype that script but simply
ask the C button to perform its task after we have calculated the result.

if (GV_OperatorNumber == 2) {
GV_Operator2 = Convert.stringToFloat(GV_CurrentOperator);
CALCULATE_RESULT.onClick();

}
else {

Example: Building a Calculator

323

8.7

TEXT_HISTORY1.setText(Convert.floatToStringUsingLocale(GV_
Operator1));
}
BUTTON_C.onClick();

First we check to see if there is a formula to calculate. If there isn’t a for-
mula to calculate, we simply do not do anything and show the number
the user typed in the history. Finally, we use the C button to clear all the
variables.

Doing the Calculation and Setting the History

Finally, we will look at performing the calculation. If the calculation
handler is called, then the global variables GV_Operator1, GV_Operator2,
and GV_Operator have a value. Based on the value of GV_Operator we
add, subtract, divide, or multiply. We store the result of the calculation
in the global variable GV_Result.

SET_HISTORY
handler

When the calculation is done, we call the SET_HISTORY handler. This
handler will move all the previous history one line down to make room
for the new result. Then we use all the variables to write the formula
plus the result to the top line of the history Text components and the
result itself into the main result box.

Finally, we set up GV_operator2 and GV_Operator1 so the user can con-
tinue calculating using the result he just got back from the calculator.

The CALCULATE_RESULT component has the following code:

if (GV_Operator == 1){

GV_Result = GV_Operator1 + GV_Operator2;
}
if (GV_Operator == 2){

GV_Result = GV_Operator1 – GV_Operator2;
}
if (GV_Operator == 3){

GV_Result = GV_Operator1 * GV_Operator2;
}

Scripting for Interactivity

324

8

if (GV_Operator == 4){

GV_Result = GV_Operator1 / GV_Operator2;
}

SET_HISTORY.onClick();
TEXT_HISTORY1.setText(GV_Operator1 + " " + GROUP_
OPERATOR.getSelectedText() + " " + GV_Operator2 + " = " + GV_
Result);
TXT_RESULT.setText(Convert.floatToStringUsingLocale(GV_
Result,2));

GV_Operator2 = 0.0;
GV_Operator1 = GV_Result;

The SET_HISTORY handler script is a set of lines where each Text compo-
nent text is set to the previous text of its predecessor.

TEXT_HISTORY6.setText(TEXT_HISTORY5.getText());
TEXT_HISTORY5.setText(TEXT_HISTORY4.getText());
TEXT_HISTORY4.setText(TEXT_HISTORY3.getText());
TEXT_HISTORY3.setText(TEXT_HISTORY2.getText());
TEXT_HISTORY2.setText(TEXT_HISTORY1.getText());
TEXT_HISTORY1.setText("");

This is the setup of the calculator. Even if there are parts that are pretty
complicated, there are a couple of things you can take away from this
example:

� You can do a lot of calculation in Design Studio. If you can build a cal-
culator, there are a lot of other possibilities.

� Calling event handlers can save you from doing a lot of duplicate
scripting.

� You can use global variables for checking a status in the application
with an IF statement. This way, you can apply lots of logic in the
application.

Summary

325

8.8

8.8 Summary

In this chapter we looked at several ways to add interactivity to a Design
Studio application. In the first half of the chapter, we described the basic
information you need in order to script: information about the language
syntax, how to use tools like the Script Editor and the New Statement
Wizard, and methods. In the second half of the chapter, we walked you
through some examples of adding interactivity to Design Studio applica-
tions; most notably, we talked about the complex process of building a
calculator. After reading this chapter, you should be well on your way to
creating interactive Design Studio applications.

327

In this chapter we will provide you with a number of guidelines
to help you build applications with Design Studio.

9 Design Principles and Visualization
Options

Building an application using Design Studio is about more than knowing
how all the pieces and parts work—it’s also about understanding how to
put them together in a way that will make sense to users. In this chapter,
we’ll walk you through some basic design principles to guide you in this
process. We’ll then describe all the possible visualization options that
Design Studio provides, and offer some hints about when which option
might be the right visualization method.

9.1 General Design Principles

When building an application, it is very important to remember that you
are building it for users. In this section, we will describe some principles
that will help you to build an application that has a greater chance of
actually being used. Some of these may seem intuitive, but you’d be sur-
prised how often basic, intuitive principles are violated at design time.

9.1.1 Don’t Make Users Think

Limit question
marks

An application should be as obvious and self-explanatory as possible. It
is your job as a developer to limit the number of question marks for the
user, and make the application navigation as intuitive as possible. If this
isn’t accomplished, users will not understand how to use the application
to find the information they are looking for. Eventually, they will stop
looking.

Design Principles and Visualization Options

328

9

For example, if a manager asks for a report so he can see how every
region performed the day before, you can show him all kinds of compar-
isons. In the first example in Figure 9.1, we see a table with comparisons
to the budget in the month, cumulative year values, last year values, etc.
In the second example, shown in the same figure, we see only a percent-
age. The second one is much easier to grasp because it doesn’t require
much thinking. Now imagine that this report was about 50 stores
instead of just four regions—this has the potential to make a huge differ-
ence in user comprehension.

9.1.2 Don’t Make Users Wait

Application
performance

When you build an application, always keep performance in mind. How
long do users have to wait at the start? How long does it take when they
go to page 3 of the Pagebook component? When an application contains
many data sources, think of a scenario where some basic information is
already visible at startup and the rest will be loaded when needed. Then
the user has some instant gratification, as he already sees some results.

It has been found that if a website takes longer than seven seconds to
show anything, half the users give up. Another seven seconds and the
remaining half gives up too.

9.1.3 Manage User Focus

Use edges,
patterns, and

motions cautiously

The human eye immediately recognizes edges, patterns, and motions.
Think of how often you have reacted to movement you saw out of the
corner of your eye. Use those elements for the most important informa-
tion, and avoid using them for the rest.

Figure 9.1 Don’t Make Users Think

General Design Principles

329

9.1

In this example, we again show the table with the sales of our four
regions. In the bottom table, we highlighted one number that we think
is the most important (Figure 9.2). Note that finding this number on the
top table is much more difficult.

9.1.4 Emphasize the Features

Make buttons
obvious

Another key principle is to clearly emphasize the important features in
your application. Design a clear structure and create buttons that are
obvious for the user. At first glance, the user should immediately know
where he can click. Letting the user know what is available is one of the
fundamental principles of design.

In the example in Figure 9.3, there are three buttons with the same func-
tion. The left one is the most obvious. The right one, on the other hand,
would give you pause, because it doesn’t look like a button.

9.1.5 Keep It Simple

More isn’t always
better

Users go to an application to get information or perform a particular
task. They might be amused by the first look at a fancy design, but in the
end they want to get their information or perform their task as easily as
possible.

Figure 9.2 Focus the Eye

Figure 9.3 Emphasize Features

Design Principles and Visualization Options

330

9

As you saw in Figure 9.1, the second example was much easier to grasp.
One of the reasons for this is that the second table is much simpler and
is dedicated to the question “How did we do?” Sometimes, more isn’t
always better.

9.1.6 Use Conventions

Tradition has its
place

Although it is fun to think of new ways to show information, often the
basic conventions are the best choice. Users are used to these conven-
tions and therefore do not need much time to get started with a new
application. Only deviate from conventions when you have a clear rea-
son why you think that the new option will be an improvement over the
convention.

As we saw in Figure 9.3, the left button is the easiest to recognize. This
button is easier to grasp than the second one because we are used to this
kind of button. Over the years we’ve clicked thousands of buttons like
this. Now when we see a visualization like that, we immediately assume
it’s a button, without even looking at the text on it.

9.1.7 Get the Most out of the Room on the Screen

Control your
screen

The most challenging aspect of application design in this mobile age is
that you have to put a lot of information, often very different in theme,
into a small amount of real estate: the computer screen, iPad screen, or
even the iPhone screen. Inserting all this information mustn’t jeopardize
the clarity of the application.

The following principles can be applied:

� Summarize the information and show the exceptions.

� Try to avoid elements that do not present data.

� If you cannot avoid nondata elements, try to make them blend in as
much as possible.

� Highlight the most important information, as it needs to be seen first.

� Keep the most important part of the screen for the most important
information. The top left and middle are the most important parts.

General Design Principles

331

9.1

To help you to do more with less, let’s briefly discuss the data-to-pixel
ratio. The data-to-pixel ratio is derived from the data-ink ratio, which
was introduced by Edward R. Tufte. When information is displayed on
the screen, some of the pixels show the data, and the other pixels show
visual elements that don’t represent data. To build a lean dashboard that
uses the screen well and avoids overloading the user with a lot of ele-
ments, you should try to maximize the ratio. This creates room to put
more information in the same amount of space without overwhelming
the user with all kinds of signals. In the example in Figure 9.4, we see
two tables that show the exact same information. However, notice how
the second table provides a lot less distraction.

The advantage of reducing the number of elements is that you don’t
have to shout if you want to highlight a particular number. Just empha-
sizing it slightly is enough, as you can see in Figure 9.5.

Figure 9.4 Tables Redesigned with the Data-to-Pixel Ratio in Mind

Figure 9.5 Emphasize the Data

Design Principles and Visualization Options

332

9

Design Studio has a lot of visualization options, which we’ll introduce
you to next. When choosing your method, make sure to keep the above
principles in mind!

9.2 Choosing a Visualization Method

When choosing from among the visualization methods that Design Stu-
dio has to offer, it’s essential to think about how the user wants to look
at the data. Remember to always start by asking yourself these ques-
tions:

� What is important? Especially, which dimensions and key figures are
important?

� What is the message that I need to communicate? Do you want to
know the trend? The exception? Do you want to compare numbers?

� What options do I have in Design Studio to present the data?

� Which of the options is best to present the data?

Know your choices In this section we are going to discuss the visualization options in
Design Studio.

9.2.1 Single Number

A single number (Figure 9.6) is a very effective way to present data. If
the most important metric of the organization is sales, for example, then
just one number can convey a lot of information. Single number visual-
izations are especially useful when you design for mobile devices.

Figure 9.6 Single Number Visualization

Choosing a Visualization Method

333

9.2

For example, if users want to know yesterday’s sales, making an applica-
tion that shows the total number, and perhaps the deviation from target,
would be of great benefit.

The disadvantage of a single number visualization is that you do not see
any trends. You can add a color to show if a number is good or bad, but
you can’t give any additional information.

9.2.2 Line Chart

Trends in dataA line chart (Figure 9.7) is a chart where a line flows from left to right.
It usually involves time, which is plotted along the x-axis. Because of its
format, a line chart is very useful to show trends in data. If you want to
emphasize the comparison between values more, then you should think
about a column or bar chart instead of a line chart.

There is one variation on a line chart, which we discuss next.

Horizontal Line Chart

Data shown from
top to bottom

A horizontal line chart (Figure 9.8) is similar to a line chart, but instead
of showing the data from left to right, this chart goes from top to bot-
tom. If you have a specific need to display labels horizontally, this chart
may be useful—but in general, we do not recommend it. It is easier to
read trends going from left to right, so the traditional line chart is usu-
ally best. (And again, if you want to compare values, we recommend the
bar chart.)

Figure 9.7 Line Chart

Design Principles and Visualization Options

334

9

9.2.3 Bar Chart

Compare values of
multiple entities

A bar chart (Figure 9.9) compares the values of several entities with each
other across dimension values that are set below each other. As you can
see in the example, it is very easy to see which region has the highest
values. An advantage of the bar chart over the column chart is that the
labels are horizontal, which makes them easier to read. A bar chart is for
comparing values. For trends or exact numbers you are better off using
a line graph or crosstab.

There are several variations on bar charts.

Stacked Bar Chart

Part-to-whole
relationship of

underlying entities

A stacked bar chart (Figure 9.10) is a bar chart where the bar itself is
divided into colors based in the part-to-whole relationship of the under-
lying entities. The chart shows the part-to-whole relationship in the bar,
and the bars themselves can be compared to each other. If you have only

Figure 9.8 Horizontal Line Chart

Figure 9.9 Bar Chart

Choosing a Visualization Method

335

9.2

one bar, a standard bar chart with a bar for each entity is more useful. A
stacked bar chart can be used when you have multiple whole values (for
example, sales per month) and the whole is divided by region.

Keep in mind, though, that comparing the colored parts across bars is
difficult, as the starting points are dependent on values of the entities.
For example, suppose you have more than one bar, each divided into
five parts. The first part of bar 1 has a value of 10, and the first part of
bar 2 is 15. Now, suppose the second part of bar 1 is 8, and the second
part of bar 2 is 10. Seeing that the first part of bar 2 is smaller is difficult,
because that part of the bar starts at 10 and goes to 18—compared to the
second, which goes from 15 to 25. The bottom line is, if you want to
compare something easily, you want to have the same base—so you just
have to look which bar is the longest.

This type of chart is most useful when you want to compare a value
across entities and also want to see something of the part-to-whole rela-
tionship with that entity. This chart does not show trends, outliers, or
exact values well.

100% Stacked Bar Chart

Part-to-whole dataA 100% stacked bar chart (Figure 9.11) is a stack of horizontal bars
where you show the part-to-whole data. This visualization allows you to
show part-to-whole relations across a dimension. The disadvantage is

Figure 9.10 Stacked Bar Chart

Design Principles and Visualization Options

336

9

that you cannot compare the dimension itself, as everything is added to
100%. An alternative that paints a part-to-whole relation more clearly is
the bar or column chart, as it is easier to make comparisons with them.

Bar Combination Chart

Two key figures
across a dimension

A bar combination chart (Figure 9.12) is a bar chart with a vertical line
chart added, allowing you to show two key figures across the dimen-
sions. A bar combination chart is useful for comparing data, like the bar
chart, but you can also show a trend, as you also have a line graph at
your disposal. For example, if you want to show the profitability per
region and want to show the cumulative value as well, a combination
chart would be very useful.

Figure 9.11 100% Stacked Bar Chart

Figure 9.12 Bar Combination Chart

Choosing a Visualization Method

337

9.2

9.2.4 Column Chart

Compare valuesA column chart (Figure 9.13) is a chart that shows columns from left to
right, where the height of the column conveys the value for a particular
entity. A column chart is used for comparing entities with each other.
The size of the bars allows you to compare the values in the chart to each
other.

We like the bar chart a bit more than the column chart, because the col-
umn chart makes it more difficult to place labels—they go beneath the x-
axis. A column chart is best suited for comparing values, while it is less
useful for showing trends or exact values.

As with the line and bar charts, there are several variations of column
charts.

Stacked Column Chart

Vertical alignmentThe stacked column chart (Figure 9.14) has the same advantages and dis-
advantages as the stacked bar chart, but the labels are in vertical align-
ment.

100% Stacked Column Chart

The 100% stacked column chart (Figure 9.15) does the same thing as the
100% stacked bar chart, but it has vertical columns instead of bars.
Again, for comparisons of part-to-whole, you’re better off with standard
bar or column charts.

Figure 9.13 Column Chart

Design Principles and Visualization Options

338

9

Column Combination Chart

Column and line
chart

A column combination chart (Figure 9.16) is like a column chart, but
with a line chart added so that you can show a second value across the
dimension. The column combination chart is best used when data needs
to be compared and you also want to show the aggregated part-to-whole
relationship. This type of chart is less suitable for exact values and for
trend analysis.

Figure 9.14 Stacked Column Chart

Figure 9.15 100% Stacked Column Chart

Choosing a Visualization Method

339

9.2

9.2.5 Area Chart

Data trendsAn area chart (Figure 9.17) emphasizes trends of data, and allows you to
compare the trends of several entities with each other. This visualization
type is good for when you need a little bit of both. If you want to
emphasize the comparison more, a bar or column chart would be better;
for the trend, a line chart would be preferable.

There is also one variation of the area chart.

Horizontal Area Chart

Does not show
exact values

A horizontal area chart (Figure 9.18) is a horizontal chart that goes from
top to bottom. As with the area chart, it does a bit of comparing and a bit
of trending. It does not show exact values.

We find horizontal area charts to be a bit less effective than standard
area charts, as the trending function is hampered by the fact that you

Figure 9.16 Column Combination Chart

Figure 9.17 Area Chart

Design Principles and Visualization Options

340

9

have to read from top to bottom instead of left to right. As it is quite dif-
ficult to compare data using this type of chart, you might want to con-
sider a bar combination chart instead.

9.2.6 Crosstab

Look up exact
information

You may recall from our earlier chapters that we often use Crosstab

components. A crosstab (Figure 9.19) is a table in which numbers are
presented along rows and columns, which is very useful for displaying
exact information. You can show a lot of data in an efficient way. How-
ever, crosstabs are not very useful for identifying trends and other rela-
tions between data points. You can highlight outliers by changing the
layout of numbers that are outside of the main trend, but you can’t show
how much or how good or bad something is.

Figure 9.18 Horizontal Area Chart

Figure 9.19 Crosstab Visualization

Choosing a Visualization Method

341

9.2

9.2.7 Bubble Chart

Data in three
dimensions

A bubble chart (Figure 9.20) is a chart that shows data in three dimen-
sions. You use three values: one shown on the x-axis, one shown on the
y-axis, and one shown via the size of the bubble. A well-known example
of this is the Boston Consultancy Matrix, where market share and mar-
ket growth are on the axes, and there are four quadrants for the product
life cycle. The size of the bubble is the relative amount of sales.

This type of chart is built for comparison. The position of each bubble
allows you to compare the values to each other. The sizes of the bubbles
can also be used for comparison, but this is a less exact way of compar-
ing, since you can only tell if a bubble is large or not. You cannot show
exact numbers or trends with this chart.

9.2.8 Waterfall Chart

Present negative
values

A waterfall chart (Figure 9.21) emphasizes the cumulative addition to
the end result with positive and negative values. A stacked bar chart
would have difficulties presenting the negative values, so that is where
the waterfall chart comes in handy. If you want to emphasize the com-
parison between values, a standard bar chart is a better choice.

There are several variations on the standard waterfall chart.

Figure 9.20 Bubble Chart

Design Principles and Visualization Options

342

9

Horizontal Waterfall Chart

Cumulative data A horizontal waterfall chart (Figure 9.22) shows data in a cumulative
way, where the starting point of one bar is based on the end point of the
previous bar. The endpoint of the final bar is the cumulative result over
all the entities. This helps you to see every entity’s part of the whole
value.

The advantage of a waterfall chart over a stacked bar chart is that here
you are able to see negative values clearly. This is why this chart is often

Figure 9.21 Waterfall Chart

Figure 9.22 Horizontal Waterfall Chart

Choosing a Visualization Method

343

9.2

used to show budget over- and under-runs across departments. To make
comparisons across entities easier, the entities are often sorted by their
value, so the order of entities enables you to compare the contribution
of each entity to the whole. This chart is best used when you want to
compare results that contain negative values; otherwise, a bar chart will
do the job. This chart is not suitable for showing trends or exact values.

Stacked Waterfall Chart

Enables multiple
values

A stacked waterfall chart (Figure 9.23) can put multiple values in each
part of the waterfall chart. This makes creating more advanced versions
of a waterfall possible. However, these charts are a bit harder to under-
stand—the user has to really concentrate on the chart before he can
make sense of all the values, especially when one part of a bar is positive
and one is negative.

9.2.9 Pie Chart

Not good for
trends or exact
values

A pie chart (Figure 9.24) is a chart where values are shown as slices of a
circle. A pie chart’s strength in that it shows the part-to-whole relation

Figure 9.23 Stacked Waterfall Chart

Design Principles and Visualization Options

344

9

in an easy to understand way. However, as the number of slices grows,
it is more difficult to see which entity holds what part—so comparing
values gets more difficult. Trends and exact values do not work with this
chart.

We generally recommend bar or column charts over pie charts, but they
may be effective when you only need to compare two or three values.

Multiple Pie Chart

Not recommended A multiple pie chart (Figure 9.25) shows the same pie chart for several
key figures, which allows you to show the relative sizes of the entities.
However, you could also place three identical bar charts next to each
other to accomplish the same goal. The problems we already mentioned
for a single pie chart are also valid for this type of chart. We do not rec-
ommend using this type of chart.

Figure 9.24 Pie Chart

Figure 9.25 Multiple Pie Chart

Choosing a Visualization Method

345

9.2

9.2.10 Radar Chart

Compare shape of
properties

A radar chart (Figure 9.26) is basically a line chart in which the x-axis is
a circle instead of a line. The result is a circle where a data point’s dis-
tance from the center shows the value of the key figure. A radar chart
can be useful for comparing the shape of properties for several entities
in a multiple radar chart or when you want to show data that is naturally
ordered in a circular way, like hours on a clock.

The radar chart has one variation.

Multiple Radar Chart

Several entities,
multiple values

A multiple radar chart (Figure 9.27) is a multiple version of the radar
chart and is useful for comparing several entities with each other for a
number of values. Compared to the multiple pie chart, this type of chart
emphasizes the shape of the values more than actually comparing the
values. This graph is useful when you want to give a rough impression of
the properties but not an exact comparison.

Figure 9.26 Radar Chart

Design Principles and Visualization Options

346

9

9.2.11 Scatter Chart

Highlight outliers A scatter chart (Figure 9.28) is used to show the relationship between
two key figures. It is great at showing trends of a relationship as well as
highlighting outliers—often you add trend lines to the scatter cloud to
identify a trend that you can use for future predictions. Compared to the
bubble chart, it lacks one dimension, but in return you get more clarity
and you can plot much more data into the chart. This kind of chart is not
suitable for showing part-to-whole relationships.

Figure 9.27 Multiple Radar Chart

Choosing a Visualization Method

347

9.2

9.2.12 Chart Comparison

We’ve covered a lot of charts. For an overview of all the most common
charts and their strengths and weaknesses, see Figure 9.29.

Figure 9.28 Scatter Chart

Figure 9.29 Chart Comparison

Design Principles and Visualization Options

348

9

9.3 Summary

In this chapter, we gave you a crash course in design principles, and also
walked you through the various visualization methods available in
Design Studio. At this point, you’re ready to start building more ad-
vanced applications. Read on!

Building a DuPont Analysis Application

350

10

10.1 Application Overview

Three ways to
input numbers

In the Design Studio application we see the DuPont model in the main
screen. (Figure 10.1). At the start of the application the model is empty.
The user can input numbers in three different ways.

� By manual input

� Using OLAP (online analytical processing) to access a query and insert
a number from the query

� Using the model from an external URL by passing parameters

If no numbers have been input, the main screen will show the skeleton
of the DuPont model. In this model you can see how the return on
investment is built up from the combination of asset turnover and profit
margin. Asset turnover is built up from operating income divided by the
total assets, and profit margin is built up from the earnings before inter-
est and tax, divided by the operating income.

Save the model When the user has entered numbers into the model and is satisfied with
the result, he can save the current model. For this purpose, there is a
panel on the top right where he can input the company name and the
industry name. When he clicks Submit, he can review the score later in
the comparison screen with other saved companies.

Figure 10.1 Main Screen of the DuPont Analysis Application

Building a DuPont Analysis Application

352

10

Calculate Model
button

When all the necessary numbers have been entered, the user can click
the Calculate Model button, and the model will show the model input
(Figure 10.4).

In this example (Figure 10.4), we see that the company has a return on
equity of 16%. The company achieved this result by a high profit margin
(64%) and a low turnover (0.2).

10.1.2 Inputting Numbers from an OLAP Connection

In the OLAP input screen, you can use any query or system that is con-
nected to the SAP BusinessObjects BI platform to pick numbers that you

Figure 10.3 Numbers Entered Manually

Figure 10.4 DuPont Model with Numbers Input

Application Overview

353

10.1

want to use for the DuPont model. Instead of manual input here, you
can select a query from any defined backend system, look at the data,
and select numbers that you want to enter into the DuPont model.

Select backend
system and query

When the user navigates to the General Ledger Input tab, the first step
is to select a backend system and a query that he wants to use for navi-
gation (Figure 10.5).

Once the query and system have been selected, the application connects
with the selected query. Some new features become available in the
screen to allow the user to place filters on the query (Figure 10.6).

Figure 10.5 Input to Select System and Query

Figure 10.6 Navigate the Query

Building a DuPont Analysis Application

354

10

10.1.3 Calling Numbers from Outside the Application

Insert numbers
from outside the

application

The third and final way to insert numbers into the model is from outside
of the application. When the application is called from somewhere else,
numbers can be sent to the application, and they will subsequently be
used to fill the model. This option allows web developers to use the
DuPont model by calling the application by its URL and parameters. For
example, a use case for this application could be to embed it in a website
that collects information from financial websites. The application then
works as a kind of add-on, where other applications or web pages can
use the application to show information enriched in the form of a
DuPont model.

10.1.4 Comparing the Results

Scatter chart In the final tab, the user can use a scatter chart to compare the results of
companies. In this chart, the user sees every company as a dot plotted
based on the score in asset turnover and profit margin (Figure 10.7).

Figure 10.7 Comparison Based on Profit Margin and Asset Turnover

Building the Application

355

10.2

The scatter chart shows a cloud of dots in which outliers are easily iden-
tifiable. When an interesting outlier is spotted, the user can hover the
mouse cursor over the value and see which company is the outlier.

10.2 Building the Application

In this section, we are going to show step by step how to build the appli-
cation. First we’ll explain how to lay out the components by dragging
them onto the canvas and setting the properties. Then we will build the
actual functionality of the application, including working with the data
sources and showing the script code that was added to each component.

10.2.1 Setting Up the Layout

In this section we are going to set up the layout of the application. First
we will set up the basic layout, then we will add the CSS classes for addi-
tional formatting, and finally we will set up the necessary components.

Structure

First you set up the basic structure for the application:

1. Drag a Tabstrip component onto the canvas.

2. Set the top margin, left margin, right margin, and bottom margin to 0
and the height and width to Auto.

3. Name the first tab “Model”.

4. Create three additional tabs. Give these additional tabs the names
“Manual Input”, “General Ledger Input”, and “Company Compari-
son”.

Building a DuPont Analysis Application

356

10

Model tab Now go to the first tab, Model. You will add several Grid Layout com-
ponents to the tab page so that you can place the Text components in a
fixed environment, as each component is limited by the cell boundaries.
When you are done with the grids, the Model tab should look like Fig-
ure 10.8.

Five Grid Layout
components

To build this structure, you will need five Grid Layout components:

1. Drag a Grid Layout component onto the canvas and name this com-
ponent GRID_LAYOUT_TOP.

2. Set the top margin to 40, the left and right margin to 5, and the bot-
tom margin to 20. The width and height are Auto.

3. The number of rows is 1, and the number of columns is 4. Column
widths are evenly distributed, and they all have the value 1.

4. Create a Grid Layout component in cell 0,0 of grid GRID_LAYOUT_TOP.

5. Name the new component GRID_LEVEL1 and set all the margins to 0.

6. The number of rows is 6, and they are evenly distributed (all value 1).

7. Create a Grid Layout component in cell 0,1 of grid GRID_LAYOUT_
TOP.

Figure 10.8 Basic Layout for the DuPont Model

Building the Application

357

10.2

8. Name the new component GRID_LEVEL2 and set the left and right
margins to 5 and the top and bottom margins to 0. The height and
width are Auto.

9. Set the number of rows to 7, evenly distributed.

10. Create a Grid Layout component in cell 0,2 of grid GRID_LAYOUT_
TOP.

11. Set the margins identical to GRID_LEVEL2, and set the number of
rows to 6.

12. Create a Grid Layout component in cell 0,3 of grid GRID_LAYOUT_
TOP.

13. Set the margins identical to GRID_LEVEL2, and set the number of
rows to 7.

You now have set up the initial structure that will help you to place the
components into the model. With the structure in place, you can con-
tinue with the components that will show the numbers. But before you
start adding these components, you must set up the custom CSS file so
you can assign the right layout classes immediately to the components.

Set Up the Custom CSS File

Upload CSS fileBefore you can insert the CSS code, you need to upload a CSS file. Use
Notepad or a similar program to create a file with the extension .css.

The following classes are defined in the CSS file:

.header
{
letter-spacing:5px;
font-family:"Verdana", Arial, serif;
font-size:300%;
color:rgb(128,128,128);
}
.button
{
border:2px solid #a1a1a1;
padding:10px 30px;
background:#dddddd;
border-radius:25px;
font-family:"Verdana", Arial, serif;

Building a DuPont Analysis Application

358

10

color:rgb(128,128,128);
box-shadow: 5px 5px 2px #666666;
font-size:150%;
font-weight:500;
}

.buttonselected
{
border:2px solid #a1a1a1;
padding:10px 30px;
background:#ccccccc;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
box-shadow: 5px 5px 2px #666666;
font-size:150%;
font-weight:700;
}

.panel
{
background-color:#F5F5F5;
border:4px solid #a1a1a1;
border-radius:25px;
}

.listbox
{
border:2px solid #a1a1a1;
padding:10px 30px;
background:#dddddd;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
box-shadow: 5px 5px 2px #666666;
font-size:110%;
font-weight:400;
}

.textbox
{
border:1px solid #a1a1a1;
background:#eeeeee;

Building the Application

359

10.2

border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
font-size:150%;
font-weight:700;
text-align:center;
padding: 5px 5px 5px 5px;

}
.textbox2
{
border:1px solid #a1a1a1;
background:#eeeeee;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
font-size:150%;
font-weight:500;
position:absolute;
top:50%;
}
.smalltext
{
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
font-size:70%;
text-align:center;
}

Listing 10.1 Classes Defined in the CSS File

Use this code to build a CSS file and assign the CSS file to the Custom

CSS property of the Application component.

Set Up Components

Set up Text
components

You can now set up the first two Text components. The first is the box
with the name of the measurement; the second is the small label on top
of the box. Once you have set them up completely, you will copy these
two objects into the other Grid Layout components’ cells. You want the
text box to look like Figure 10.9.

Building a DuPont Analysis Application

360

10

1. Drag a Text component to cell 0,0 of Grid Layout component GRID_
LEVEL1.

2. Set the CSS class to textbox.

3. Set the text to “Current Assets”.

4. Rename the Text component TXT_1CURRENTASSETS.

5. Set the top margin to 15, left margin to 5, width to 175, and height
to 50. The right margin and bottom margin should be set to Auto.

These steps result in a gray panel Text component. The next step is to
add a description label above the Text component. This ensures that the
user can always see what the name of each key figure is.

1. Create a new Text component in the same grid cell.

2. Set the CSS class to smalltext.

3. Set the top margin to 0, left margin to 20, width to 80, and height to
30. The right margin and bottom margin should be set to Auto.

4. Set the text to “Current Assets”.

5. Rename the object TXT_LBLCURRENTASSETS.

Use components as
templates

You now have set up the first two components. Now you can use these
two components as templates for the Text components that will be
placed in the other cells. To do so, copy the two Text components until
you have all the components that you need for the entire model. The
process for each step is to copy the components, paste them in other
cells, and alter the text and name properties of the newly pasted compo-
nents.

1. Copy the two text components that you previously made.

2. Right-click on cells 1,0; 3,0; 4,0; and 5,0 and paste the Text compo-
nents.

Figure 10.9 First Text Box

Building the Application

361

10.2

3. Rename the larger Text component in cell 1,0 TXT_1FIXEDASSETS
and the label TXT_LBLFIXEDASSETS, and set the text for these com-
ponents to “Fixed Assets”.

4. Rename the panel in cell 3,0 TXT_1OPERATINGINCOME1 and the
label TXT_LBLOPERATINGINCOME1. Set the text to “Operating
Income”.

5. Rename the panel in cell 4,0 TXT_1OPERATINGEXPENSES and the
label TXT_LBLOPERATINGEXPENSES. Set the text to “Operating
Expenses”.

6. Rename the panel in cell 5,0 TXT_1NONOPERATINGINCOME and
the label TXT_LBLNONOPERATINGINCOME. Set the text to “Non
Operating Income”.

You have set up the first column of the model. Let’s move on to the sec-
ond column.

1. Copy the two Text components from cell 0,0 in the Grid Layout com-
ponent GRID_LEVEL1.

2. Go to Grid Layout component GRID_LEVEL2.

3. Paste the components into cells 0,0; 2,0; 4,0; and 6,0.

4. Rename the panel in cell 0,0 TXT_2OPERATINGINCOME3 and the
label TXT_LBLOPERATINGINCOME3. Set the texts to “Operating
Income”.

5. Rename the larger Text component in cell 2,0 TXT_2ASSETS, and
rename the label TXT_LBLASSETS. Set the texts in both components
to “Assets”.

6. Rename the larger Text component in cell 4,0 TXT_2EBIT, and
rename the label TXT_LBLEBIT. Set the texts to “Earnings before inter-
est and tax”.

7. Rename the panel text component in cell 6,0 TXT_2OPERA-
TINGINCOME2 and the label TXT_LBLOPERATINGINCOME2. Set
the texts to “Operating Income”.

Now for the third column:

1. Go to Grid Layout component GRID_LEVEL3.

2. Paste the components in cells 1,0 and 5,0 of GRID_LEVEL3.

Building a DuPont Analysis Application

362

10

3. Rename the panel Text component in cell 1,0 TXT_
3ASSETTURNOVER and the label TXT_LBLASSETTURNOVER. Set the
texts of both to “Asset Turnover”.

4. Rename the larger Text component in cell 5,0 TXT_
3PROFITMARGIN and the label TXT_LBLPROFITMARGIN. Set the
texts of both components to “Profit Margin”.

And, finally, the last column:

1. Copy the two components again from cell 0,0 in Grid Layout compo-
nent GRID_LEVEL1.

2. Go to Grid Layout component GRID_LEVEL4.

3. Paste the components into cell 4,0.

4. Rename the larger Text component TXT_4ROI and the label TXT_
LBLROI. Set the text to “Return on Investment”.

Insert a Panel
component

That’s all the objects. Now when you run the application it should look
roughly like the example in Figure 10.1. The next step is to insert a
Panel component that allows the user to insert a name and submit the
results.

1. Insert a Panel component into cell 0,0 of GRID_LEVEL4.

2. Set the top margin to 20 and the left margin to 25.

3. Set the width to 200 and the height to 135.

4. Add a Text component in the Panel component. Set the top margin to
10, left margin to 1, width to 95, height to 30, and right margin and
bottom margin to Auto.

5. Add an Input Field component. Set the top margin to 10; left margin
and width to 100; and the height, right margin, and bottom margin to
Auto.

6. Add a Dropdown Box component. Rename the component
DROPDOWN_INDUSTRY. Set the top margin to 35, left margin to 80,
width to 120, and the rest to Auto.

7. Add a Button component. Rename the button BTN_SUBMITCOM-
PANY.

8. Set the top margin to 72, left margin to 108, width to 80, height to
30, and the rest to Auto.

Building the Application

363

10.2

You have now created the Model tab. The result should look like Figure
10.10.

The layout for the Manual Input tab looks like Figure 10.11.

Figure 10.10 First Tab Layout

Figure 10.11 Second Tab Layout

Building a DuPont Analysis Application

364

10

Grid Layout
components

First you again will use Grid Layout components to build a screen struc-
ture before you insert the objects:

1. Go to the second tab of the Tabstrip component. This is the Manual

Input tab.

2. Insert a Grid Layout component and rename it GRID_TAB2.

3. Set all the margins to 0, width and height to 0, and the number of
rows to 2.

4. Insert a new Grid Layout component in cell 0,0 of GRID_TAB2.
Rename the component GRID_TOP.

5. Set all the margins to 0, width and height to 0, and the number of
rows to 2.

6. Insert a new Grid Layout component into cell 1,0 of GRID_TAB2.
Rename the component GRID_INPUTRESULTS.

7. Set the left and top margins to Auto. Set the right and bottom mar-
gins to 50. Set the width to Auto and the height to 200.

8. Set the number of columns to 5.

9. Set all the margins to 0, width and height to 0, and the number of
rows to 2.

10. Insert a new Grid Layout component into cell 0,0 of GRID_TOP.
Rename the component GRID_TOPLEFT.

11. Copy the text and label from cell 0,0 in GRID_LEVEL1 and paste
them into each of the cells of GRID_INPUTRESULTS.

12. Name the gray Text components, respectively, from left to right:

� TXT_INPCURRENTASSETS

� TXT_INPFIXEDASSETS

� TXT_INPOPERATINGINCOME

� TXT_INPOPERATINGEXPENSES

� TXT_INPNONOPERATINGINCOME

13. Adjust the layout parameters, margins, etc. to your own taste.

14. Insert a Radio Button Group component into cell 0,0 of GRID_
TOPLEFT.

15. Rename the component RB_GROUP_PARCHOICE.

Building the Application

365

10.2

16. Set the items as shown in Figure 10.12.

17. Set the CSS class to textbox2.

18. Add a label and adjust the components within the cell.

19. Add an Input Field component into cell 1,0 of GRID_TOPLEFT.

20. Set the CSS class to textbox2.

21. Rename the component INPUT_PARNUMBER.

22. Add a label and adjust the layout.

23. Add a Button to cell 0,1 of GRID_TOP.

24. Rename the Button component BUTTON_CALCULATEMODEL.

25. Set the CSS class to button.

26. Add a label and resize to your own taste.

You now have added all the components of the Manual Input tab.

Company
Comparison tab

In the third tab, Company Comparison, you add a Chart component
and a List Box component. The Chart component will compare compa-
nies according to their scores in the profit margin and turnover cate-
gory.

1. Go to the Company Comparison tab.

2. Add a Chart component to the canvas.

3. Set the top margin to 90, bottom margin to Auto, left margin to 225,
right margin to Auto, height to 450, and width to 830.

4. Set the chart type to Scatter.

Figure 10.12 Items in the Radio Button Group

Building a DuPont Analysis Application

366

10

5. Rename the Chart CHART_COMPCOMP. Later you will connect the
chart to a data source.

6. Add a List Box component to the canvas.

7. Set the top margin to 10, left margin to 5, bottom margin and right
margin to Auto, width to 215, and height to 380.

The result for now will look like Figure 10.13.

Note that your preliminary result will not look exactly like the example
in the figure. You still need to populate the List Box component and
attach the Chart component to a data source.

For now we have set up all the components we need for the application
structure. We will now go on and build the scripts to make the applica-
tion work.

10.2.2 Defining Global Variables

Before you insert the script, you must first define the global variables
you need in the script code. Add the global variables as they are listed in
Figure 10.14.

Figure 10.13 Company Comparison Screen

Building the Application

367

10.2

Calculated global
variable

All these global variables are used to store the model values or pass
parameters. Note the Calculated global variable. When this variable is
set to True, this will alter the behavior of the application such that each
change in the input numbers will immediately result in a recalculation
of the model. The normal behavior of the application is to wait until the
user clicks the Calculate button.

10.2.3 Setting Up the Data Sources

Two data sourcesThis application uses two data sources: one to enable OLAP input into
the model and the other for the company comparison chart.

For the first data source, it doesn’t matter which query you connect it to.
The tab page for OLAP input will use an Input Field component to
define the system and query where we will look at the numbers for our
model. Once the user enters values in these components, the initial
query will be replaced with the one the user selected.

Load in Script
property

Set the Load in Script property for this data source to true. You only
want to load the data source when the user selects a query to view.
Loading data at startup is a waste of time.

Figure 10.14 Variables for the DuPont Application

Building a DuPont Analysis Application

368

10

The second data source is an SAP NetWeaver BW query, with the initial
layout as shown in Figure 10.15.

Create a second data source, connect it to your own version of this
query, and name the data source DS_COMPANYCOMPARISON.

10.2.4 Scripting for the On Startup Handler

Populate the
List Box

In the Application component’s On Startup handler, we will add a
script to fill the items in the company comparison List Box component.
We will also add script code to check if external parameters are passed
that can be used for the calculation. If there are any values, they will be
assigned to the components and internal variables.

//Populate the List Box in the company comparison tab.

LISTBOX_SELECTINDUSTRY.setItems(DS_
COMPANYCOMPARISON.getMemberList("ZINDUSTRY", MemberPresentation
.INTERNAL_KEY, MemberDisplay.TEXT, 10));

Figure 10.15 BEx Query for Company Comparison Data Source

Building the Application

371

10.2

WHEN 'ZDS_EXITVAR'.
BREAK-POINT.
IF i_step = 2.

TABLES ZDS_COMPANIES.
DATA wa TYPE ZDS_COMPANIES.
DATA wa2 TYPE ZDS_COMPANIES.

READ TABLE i_t_var_range INTO LS_T_VAR_RANGE
WITH KEY vnam = ZCOMPANY'.
wa-ZCOMPANY = LS_T_VAR_RANGE-low.
READ TABLE i_t_var_range INTO LS_T_VAR_RANGE
WITH KEY vnam = 'ZINDUSTRY.
wa-ZINDUSTRY = LS_T_VAR_RANGE-low.

READ TABLE i_t_var_range INTO LS_T_VAR_RANGE
WITH KEY vnam = 'ZTURNOVER'.
wa-zturnover = LS_T_VAR_RANGE-low.
READ TABLE i_t_var_range INTO LS_T_VAR_RANGE
WITH KEY vnam = 'ZPROFITMARGIN'.
wa-zprofitmargin = LS_T_VAR_RANGE-low.

SELECT ZCOMPANY FROM ZDS_COMPANIES
INTO CORRESPONDING FIELDS OF wa2

WHERE ZCOMPANY = wa-ZCOMPANY.
ENDSELECT.

IF SY-SUBRC NE 0.

INSERT INTO ZDS_COMPANIES VALUES wa.
ELSE.

UPDATE ZDS_COMPANIES
zindustry = wa_zindustry
zturnover = wa-zturnover
zprofitmargin = wa-zprofitmargin
WHERE zcompany = wa-zcompany.

ENDIF.

Listing 10.3 ABAP Code to Write Back to the Table

This ABAP code will look in the ZDS_COMPANIES table to see if there is
already an entry for that company. If there is already a value present, the
ABAP code will update the values in the table. If there are no values
present, the ABAP code will add a new row to the table.

Building a DuPont Analysis Application

372

10

After the loads in SAP NetWeaver BW, where the data is transferred
from the table into an InfoCube, the results will be shown in the Com-

pany Comparison tab. However, you need to set up the transformation
and InfoCube/MultiProvider before you can replicate the result.

10.2.6 Scripting for Manual Input

Script for the
model calculation

In the Manual Input tab, we add script code for the calculation of the
model. We also insert script code to transfer the inputted values to the
boxes on the bottom of the Manual Input screen. In this section, we
will show you the script code that we have inserted in the Input Field

component INPUT_PARNUMBER and the Button component
BUTTON_CALCULATEMODEL.

INPUT_PARNUMBER on change

In the Input Field component INPUT_PARNUMBER, we set the follow-
ing script code:

if (RB_GROUP_PARCHOICE.getSelectedValue() == "1") {
CurrentAssets = Convert.stringToFloat(INPUT_

PARNUMBER.getValue());
TXT_

INPCURRENTASSETS.setText(Convert.floatToStringUsingLocale(Cur
rentAssets));
}
if (RB_GROUP_PARCHOICE.getSelectedValue() == "2") {

FixedAssets = Convert.stringToFloat(INPUT_
PARNUMBER.getValue());

TXT_
INPUTFIXEDASSETS.setText(Convert.floatToStringUsingLocale(Fix
edAssets));
}
if (RB_GROUP_PARCHOICE.getSelectedValue() == "3") {

OperatingIncome = Convert.stringToFloat(INPUT_
PARNUMBER.getValue());

TXT_
INPUTOPERATINGINCOME.setText(Convert.floatToStringUsingLocale
(OperatingIncome));
}
if (RB_GROUP_PARCHOICE.getSelectedValue() == "4") {

Building the Application

373

10.2

OperatingExpenses = Convert.stringToFloat(INPUT_
PARNUMBER.getValue());

TXT_
INPOPERATINGEXPENSE.setText(Convert.floatToStringUsingLocale(
OperatingExpenses));
}
if (RB_GROUP_PARCHOICE.getSelectedValue() == "5") {

NonOperatingIncome = Convert.stringToFloat(INPUT_
PARNUMBER.getValue());

TXT_
INPUTNONOPERINCOME.setText(Convert.floatToStringUsingLocale(N
onOperatingIncome));
}

INPUT_PARNUMBER.setValue("");

if (Calculated) {
BUTTON_CALCULATEMODEL.onClick();

}

Listing 10.4 Using the Inputted Numbers

When the user inputs a number, the script will check which number
from the model is selected in the List Box component. The Text compo-
nent that corresponds with the selected number will be updated.

After this, the script will check if the global variable Calculated has the
value True. If the value is indeed True, then the model will be recalcu-
lated immediately; otherwise, the model will not be recalculated until
the Calculate button has been clicked.

BUTTON_CALCULATEMODEL on click

This button will perform the actual calculation and will fill all the Text

components in the model. Once the calculation button is clicked, the cal-
culated variable will be set to True, resulting in each change of number
immediately leading to a recalculation of the model instead of waiting
for a new click of the button.

TXT_
1OPERATINGINCOME1.setText(Convert.floatToStringUsingLocale(Op
eratingIncome));

Building a DuPont Analysis Application

374

10

TXT_
1FIXEDASSETS.setText(Convert.floatToStringUsingLocale(FixedAs
sets));
TXT_
1CURRENTASSETS.setText(Convert.floatToStringUsingLocale(Curre
ntAssets));
TXT_1OPERATING_
EXPENSES.setText(Convert.floatToStringUsingLocale(OperatingEx
penses));
TXT_
1NONOPERATINGINCOME.setText(Convert.floatToStringUsingLocale(
NonOperatingIncome));

TXT_
2OPERATINGINCOME2.setText(Convert.floatToStringUsingLocale(Op
eratingIncome));
TXT_
2OPERATINGINCOME3.setText(Convert.floatToStringUsingLocale(Op
eratingIncome));

Assets = CurrentAssets + FixedAssets;
Earnings = OperatingIncome + NonOperatingIncome –
OperatingExpenses;

TXT_
2ASSETS.setText(Convert.floatToStringUsingLocale(Assets));
TXT_
2EBIT.setText(Convert.floatToStringUsingLocale(Earnings));

AssetTurnover = OperatingIncome / Assets;
ProfitMargin = Earnings / OperatingIncome * 100;

TXT_
3ASSETTURNOVER.setText(Convert.floatToStringUsingLocale(Asset
Turnover,1));
TXT_
3PROFITMARGIN.setText(Convert.floatToStringUsingLocale(Profit
Margin)+ "%");

ROI = AssetTurnover * ProfitMargin;

Building the Application

375

10.2

TXT_
ROI.setText(Convert.floatToStringUsingLocale(ROI, 1)+ "%");

Calculated = true;

Listing 10.5 Recalculating the Model

10.2.7 Scripting for OLAP Input

Select backend
system and query

On the OLAP Input tab, the script code is used to allow the user to input
his own query for selecting numbers for the model. Before navigating
through data, the user first will see a submit panel where he can select a
backend system and a query.

Using the selected system and query, the script will assign the query to
the data source. The query panel and the Crosstab component that will
be used for navigation are connected to that data source.

BTN_QUERYSUBMIT on click

DS_FREEHAND.assignDataSource(INPUT_
QUERY.getValue(), DataSourceType.QUERY, INPUT_
SYSTEM.getValue());
DS_FREEHAND.loadDataSource();
PNL_QUERYNAVIGATION.setVisible(true);
PNL_ASSIGNQUERYRESULT.setVisible(true);

Listing 10.6 Using Your Own Query from Any Connected System

Submit buttonWhen you select a value in the Crosstab component, you can insert the
selected value into the model by clicking the Submit button. In this
example, we limited the script to just add numbers to the input. An
extra option was to build a complete Submit tab like the one we already
built in the Manual Input tab. The Submit button takes the value and
the model item in the List Box component, and uses this to update the
number in the model.

In this example, you can use the model to add filters until you reach the
value you want for the model. Then click the button to actually add it to
the DuPont model.

Building a DuPont Analysis Application

376

10

BUTTON_QUERYINPUT on click

if (QUERYINPUT_NUMBERTYPE.getSelectedValue() == "1") {
CurrentAssets = Convert.stringToFloat(DS_

FREEHAND.getDataAsString("4SXI09YNYC75HX1Y41Z7X8XXF", {}));
TXT_

INPCURRENTASSETS.setText(Convert.floatToStringUsingLocale(Cur
rentAssets));
}
if (QUERYINPUT_NUMBERTYPE.getSelectedValue() == "2") {

FixedAssets = Convert.stringToFloat(DS_
FREEHAND.getDataAsString("4SXI09YNYC75HX1Y41Z7X8XXF", {}));

TXT_
INPUTFIXEDASSETS.setText(Convert.floatToStringUsingLocale(Fix
edAssets));
}
if (QUERYINPUT_NUMBERTYPE.getSelectedValue() == "3") {

OperatingIncome = Convert.stringToFloat(DS_
FREEHAND.getDataAsString("4SXI09YNYC75HX1Y41Z7X8XXF", {}));

TXT_
INPUTOPERATINGINCOME.setText(Convert.floatToStringUsingLocale
(OperatingIncome));
}
if (QUERYINPUT_NUMBERTYPE.getSelectedValue() == "4") {

OperatingExpenses = Convert.stringToFloat(DS_
FREEHAND.getDataAsString("4SXI09YNYC75HX1Y41Z7X8XXF", {}));

TXT_
INPOPERATINGEXPENSE.setText(Convert.floatToStringUsingLocale(
OperatingExpenses));
}
if (QUERYINPUT_NUMBERTYPE.getSelectedValue() == "5") {

NonOperatingIncome = Convert.stringToFloat(DS_
FREEHAND.getDataAsString("4SXI09YNYC75HX1Y41Z7X8XXF", {}));

TXT_
INPUTNONOPERINCOME.setText(Convert.floatToStringUsingLocale(N
onOperatingIncome));
}

INPUT_PARNUMBER.setValue("");

if (Calculated) {

Summary

379

10.3

Everything works the same way in the application—but now some val-
ues are already filled because the application was opened with parame-
ters.

10.2.9 Scripting for Comparing the Results

Refresh the graphFinally, in the Company Comparison tab, we will add a little script to be
able to refresh the graph based on the selection in the List Box compo-
nent. If the user selects an industry, the graph will show only the com-
panies within that industry.

LISTBOX_SELECTINDUSTRY on click

DS_COMPANYCOMPARISON.setFilter("ZINDUSTRY", LISTBOX_
SELECTINDUSTRY.getSelectedValue());

Listing 10.8 Selecting a Company

10.3 Summary

In this chapter we showed you how to build a complex model using the
scripting in Design Studio. We also used several features for a standard
layout. As you can see, the complexity can rapidly increase once you
start adding features to the model. The main point of this example is to
show how you can select values from different sources and use them in
calculations.

Building a Sales Dashboard Application

382

11

Actual sales vs.
sales targets

When we look in Figure 11.1 at the total sales without any filter, the
largest country in terms of sales is the Netherlands. On the left we see
the actual sales per country as bars and the sales target as the line. One
quick scan across the bar chart tells us that all the top countries are beat -
ing their targets. Saudi Arabia, in particular, seems to do exceptionally
well, as their sales are much better than the sales target.

Top N countries If we want to see the top 15 or top 20 countries, we can change the top
n value by selecting another item in the List Box component on the top
left. When we set it to the top 20, the list of countries in the sales versus
target chart grows to 20 countries. We now see the United Kingdom
appear as the 20th country in the graph (Figure 11.2).

Figure 11.1 World-Wide Sales Dashboard Application Start Screen

Application Overview

383

11.1

Apply additional
filters

We can apply additional filters to the list. For example, if you want to
analyze the top 15 countries of 2006, you can set the year filter, and the
chart will show the countries with the highest budgeted sales for 2006.
You could also set a filter for region.

In the example in Figure 11.3, we see the top eight countries. Although
the setting for top n is still 15, there are only eight countries we can
report on.

In this example we selected India, as this country is the largest in the
region. On the right you see in the pie chart that there were no global
companies selling products in India in 2006; the whole market was
being served by local companies. Below the pie chart is the line chart
visualizing sales development over the years. A first impression is that
2007 must have been a very bad year for the local market, as there is a
steep dive in sales for that year. Since that year there has been a slow
recovery, but the sales level until 2011 is nowhere near the level of
2006.

Figure 11.2 Top 20 Countries in the Start Screen

Building a Sales Dashboard Application

384

11

On the bottom left, you see the sales divided by luxury level. By looking
at the graph, we can conclude that there is not a market for medium or
luxury products; there is only a market for basic products in India.

India vs.
Switzerland

Let’s compare the data from India to another country. If we now filter
on Europe and Central Asia, we again see a list of top countries. We se-
lect Switzerland, which is in second place in the top n list (Figure 11.4).

Our first impression is that the detailed graphs on the right and the bot-
tom left are very different from what we saw for India. In the pie chart,
we see that there are six global companies in Switzerland, competing
with the local market. When we hover over the pie chart, we can get a
closer look at the market shares of each company. As you can see in Fig-
ure 11.5, the market share for colors in style is about 20%, with sales of
$464 million.

On the historical line chart on the bottom right, we see that some of the
global companies only recently entered the Swiss market. The company
We are Colors entered the market in 2002. The company Colors Every-
where entered the market in 2004.

Figure 11.3 Top Countries for South Asia in 2006

Application Overview

385

11.1

On the bottom left of the dashboard, we see that the division by luxury
level is very different from the Indian market. Here the basic lines are
only a small part of the total market in Switzerland. The luxury line is a
large part of the total market, almost as large as the medium line.

If we want to know more exact numbers of the market shares of the
companies in Switzerland, we can either click a segment of the pie chart
or click on a company in the legend. For the example, we wanted to

Figure 11.4 More Information about Swiss Sales

Figure 11.5 Market Share for Colors in Style in Switzerland

Building a Sales Dashboard Application

386

11

know more about Colors in Style. Their sales are a bit over 20% of the
total market, totaling roughly $424 million.

In the company detail view of the worldwide sales dashboard applica-
tion, we can look at the data in more detail (Figure 11.6). We now can
navigate through the top countries list for individual companies. On the
left you can apply filters, select a company, a region, or the year. On the
bottom is a waterfall chart. This chart shows the cumulative contribu-
tion of every country to the deviation from the sales target.

This example shows the top 10 countries in Europe and Central Asia in
terms of sales for the company Historic Color for 2011. In the table you
see the country, the amount of sales in millions of dollars, and the devi-
ation from the sales target.

If you want to go to the next 10 countries, you can click the appropriate
button on the bottom right. Countries 11 through 20 will then be
shown, and a button will appear at the top right, enabling you to go back
to the top 10 countries. The Next 10 Countries button will send you to
countries 21 through 30. When there are no countries left, the table will
remain empty.

Figure 11.6 Sales per Country Filtered by Company and Year

Building the Application

387

11.2

11.2 Building the Application

In this section, we will go step by step through the process of building
the application. First we will set up the layout of the application (Section
11.2.1). In the rest of the section, we will perform the various steps
required to add interactivity to the application. We will look at the fil-
ters, the top n variables, and how to build all this in the script and in the
SAP NetWeaver BW queries. We will also set up a data source that will
be filtered using BEx variables that are set up in the script. (Remember,
you can download the application and CSS files from the book’s website
at www.sap-press.com.)

11.2.1 Setting Up the Layout

Build the main
structure

Let’s start by building the main structure of the application (Figure
11.7). As described earlier, there are two pages in the application. In the
two pages are some basic elements and a grid component. The Grid Lay-

out components hold most of the other components.

CSS Classes

First upload a CSS file to the application with the following CSS classes:

.header
{

Figure 11.7 Outline View of the Sales Dashboard Application

Building a Sales Dashboard Application

388

11

letter-spacing:5px;
font-family:"Verdana", Arial, serif;
font-size:300%;
color:rgb(128,128,128);
}
.header2
{
letter-spacing:2px;
font-family:"Verdana", Arial, serif;
font-size:200%;
color:rgb(128,128,128);
border:1px solid #ffffff;
}

.messageclass1
{
letter-spacing:2px;
font-family:"Verdana", Arial, serif;
font-size:200%;
color:rgb(60,153,41);
border:1px solid #ffffff;
}

.messageclass2
{
letter-spacing:2px;
font-family:"Verdana", Arial, serif;
font-size:200%;
color:rgb(139,204,126);
border:1px solid #ffffff;
}

.messageclass3
{
letter-spacing:2px;
font-family:"Verdana", Arial, serif;
font-size:200%;
color:rgb(128,128,128);
border:1px solid #ffffff;
}
.messageclass4
{

Building the Application

389

11.2

letter-spacing:2px;
font-family:"Verdana", Arial, serif;
font-size:200%;
color:rgb(235,150,150);
border:1px solid #ffffff;
}

.messageclass5
{
letter-spacing:2px;
font-family:"Verdana", Arial, serif;
font-size:200%;
color:rgb(242,27,27);
border:1px solid #ffffff;
}
.button
{
border:2px solid #a1a1a1;
padding:10px 30px;
background:#dddddd;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
box-shadow: 5px 5px 2px #666666;
font-size:150%;
font-weight:500;
}

.buttonselected
{
border:2px solid #a1a1a1;
padding:10px 30px;
background:#ccccccc;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
box-shadow: 5px 5px 2px #666666;
font-size:150%;
font-weight:700;
}

.panel
{

Building a Sales Dashboard Application

390

11

background-color:#F5F5F5;
border:1px solid #a1a1a1;
border-radius:25px;
}

.listbox
{
border:1px solid #a1a1a1;
padding:10px 30px;
background:#F5F5F5;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
font-size:100%;
font-weight:400;
}

.textbox
{
border:1px solid #a1a1a1;
background:#eeeeee;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
font-size:150%;
font-weight:700;
text-align:center;
padding: 5px 5px 5px 5px;

}
.textbox2
{
border:1px solid #a1a1a1;
background:#eeeeee;
border-radius:25px;
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
font-size:150%;
font-weight:500;
position:absolute;
top:50%;
}

Building the Application

391

11.2

.smalltext
{
font-family:"Verdana", Arial, serif;
color:rgb(128,128,128);
font-size:70%;
text-align:center;
}

Listing 11.1 CSS Classes

Building Components

Next let’s start building the components. Follow the steps below:

1. Add a Pagebook component on the canvas.

2. Set the margins to top: 15, bottom: 0, left: 0, and right: 0. Width and
height are Auto.

3. Add a Text component to the canvas (not in the Pagebook compo-
nent).

4. Set the text to “Sales Analysis” and the name to TXT_MAINTITLE.

5. Set the margins to top: 10, left: 20, right: Auto, width: 350, height:
45, and bottom: Auto.

6. Set the CSS class to header.

7. Add a Grid Layout component to page 1 of the Pagebook compo-
nent.

8. Set the name to GRID_LAYOUT_1.

9. Set the margins to top: 30; bottom, right, and left: 0; and height and
width: Auto.

10. Set the number of rows: 1 and number of columns: 1.

11. Insert three Panel components in GRID_LAYOUT_1.

12. Panel 1:

� Name: PNL_SELECTCOUNTRY

� CSS class: panel

� Margins: top: 25, bottom and right: Auto, width: 560, height:
465

� Added CSS style: border:1px solid; border-radius:25px

Building a Sales Dashboard Application

392

11

13. Panel 2:

� Name: PNL_LUXURYLEVEL

� CSS class: panel

� Margins: top: 500, left: 20, bottom: 5, right: Auto, width: 565,
height: Auto

14. Panel 3:

� Name: PNL_MARKETSHARE

� CSS class: panel

� Margins: top: 25, left: 600, bottom: 5, right: 10, height and
width: Auto

The result of these steps is the basic skeleton of page 1, as shown in Fig-
ure 11.8.

Page 2 of the
Pagebook

component

We now move on to page 2 of the Pagebook component. In this page
we are going to build the structure as shown in Figure 11.8. For an over-
view of the components that we are going to add, see Figure 11.9.

Figure 11.8 Skeleton Page 1 of Worldwide Sales

Building the Application

393

11.2

1. Add a List Box component to page 2 of the Pagebook component.

� Name: LST_COMPANYSELECT

� CSS class: listbox

� Margins: top: 40, left: 20, bottom: Auto, right: Auto, width: 200,
height: 200

2. Add another List Box to page 2 of the Pagebook component.

� Name: LST_REGIONSELECT

� CSS class: listbox

� Margins: top: 260, left: 20, bottom: Auto, right: Auto, width:
200, height: 205

3. Add a Dropdown Box component to page 2 of the Pagebook compo-
nent.

� Name: LST_YEARSELECT

� CSS class: listbox

� Margins: top: 475, left: 25, bottom: Auto, right: Auto, width:
200, height: 50

4. Add a Grid Layout component to page 2 of the Pagebook compo-
nent.

� Name: GRID_LAYOUT_3

� Number of rows: 3, number of columns: 1

Figure 11.9 Outline View of Page 2 of the Sales Application

Building a Sales Dashboard Application

394

11

5. In cell 0,0 of GRID_LAYOUT_3 add a Panel component.

� Name: PNL_TOP10TABLE

� CSS class: Panel

� Margins: top, bottom, left, right: 0; width, height: 0.

6. In cell 1,0 of GRID_LAYOUT_3 add a Button component.

� Name: BUTTON_NEXT10

� CSS class: listbox

� Margins: top: 8, left 900, right: Auto, bottom: Auto, width: 125,
height: 30

� Text: Next 10 Countries

7. Add a Text component.

� Name: TXT_WATERFALLLABEL

� Text: Waterfall chart top 10 countries

� Margins: top: 5, left: 5, bottom: Auto, right: Auto, height: 30,
width: 465

The result of these components is shown in Figure 11.10. There is still
something missing, however. In the figure there is a table with multiple
Text components. That table is a Grid Layout component inside the
Panel component PNL_TOP10TABLE.

Figure 11.10 Skeleton of Page 2

Building the Application

395

11.2

Add the tableWe will now add the table. As you can see, there are temporary texts
inserted in the Text components for the time being. Later in Section
11.2.3 we will walk through the steps to fill all the Text components
with the countries and numbers data.

For now go to the Panel component PNL_TOP10TABLE.

1. Add a Grid Layout component to the table.

� Name: GRID_LAYOUT_2

� Number of rows: 11, number of columns: 3

� Margins: left, right, top, bottom: 5; height, width: Auto

2. Add a Text component to cell 0,1 of GRID_LAYOUT_2.

� Name: TXT_SALESHEADER

� CSS class: smalltext

� Text: Sales Amount

� Margins: top: 5; left: 10; bottom: 0; right: 10; width, height: Auto

3. Add a Text component to cell 0,2.

� Name: TXT_DELTAHEADER.

� CSS class: smalltext

� Text: Delta versus Budget %

� Margins: top: 5; left: 10; bottom: 0; right: 10; width, height: Auto

4. Add a Button component to cell 0,2.

� Name: BUTTON_PREVIOUS10

� CSS class: listbox

� Text: Previous 10 Countries

� Margins: top: 5; left: 160; bottom, right: Auto; width: 125;
height: 30

Add componentsWe will now add components in the next 10 rows. We will describe the
steps to build the first row. The following nine rows are identical except
for the names. We will copy all the components from the first row to the
next nine rows.

Building a Sales Dashboard Application

396

11

1. Add a List Box component to cell 1,0.

� Name: LST_TOP1COUNTRY

� Visible: false

2. Add a Text component to cell 1,0.

� Name: TXT_TOP1COUNTRY

� CSS class: header2

� Margins: top, bottom, left, right: 0; width, height: Auto

3. Add a Text component to cell 1,1.

� Name: TXT_TOP1_SALES

� CSS class: header2

� Margins: top, bottom, left, right: 0; width, height: Auto

4. Add a Text component to cell 1,2.

� Name: TXT_TOP1_DELTA

� CSS class: header2

� Margins: top, bottom, left, right: 0; width, height: Auto

5. Copy the TXT_TOP1COUNTRY component to cells 2,0 through 10,0.

Name the new components TXT_TOP2COUNTRY through TXT_
TOP10COUNTRY.

6. Copy the component TXT_TOP1_SALES to cells 2,1 through 10,1.

Name the new components TXT_TOP2_SALES through TXT_TOP10_
SALES.

7. Copy the component TXT_OP1_DELTA to cells 2,2 through 10,2.

Name the new components TXT_TOP2_SALES through TXT_TOP10_
SALES.

The result is the layout we showed in Figure 11.10.

Customize the
CSS code

This would be a nice moment to play around with the CSS code. Change
some colors, backgrounds, or fonts to your liking. With a layout like
this, you can learn a lot by just trying things and seeing what happens.

Building the Application

399

11.2

To show the users the market share of each company in a country, we
will use a pie chart that shows the relative size of each company for a
selected country. Add a Chart component to panel PNL_SELECTCOUN-
TRY. Use a data source with the layout as shown in Figure 11.12.

Chart Type
property

Change the Chart Type property in the Chart component to Bar Com-

bination. In the On select handler of the Chart component, we set the
following code:

DS_MARKETSHARES.setFilter("ZCOUNTRY", CHRT_TOPNCOUNTRIES.getSe-
lectedMember("ZCOUNTRY"));
DS_HISTORY.setFilter("ZCOUNTRY", CHRT_TOPNCOUNTRIES.getSelect-
edMember("ZCOUNTRY"));
DS_LUXURYLEVELS.setFilter("ZCOUNTRY", CHRT_TOPNCOUNTRIES.getSe-
lectedMember("ZCOUNTRY"));
TXT_SELECTEDCOUNTRYLABEL.setText(DS_MARKETSHARES.getFilter-
Text("ZCOUNTRY"));

Three data sourcesThree data sources are being filtered on the selected country. A Text

component will show the selected country.

In the Panel component PNL_MARKETSHARE, add a Chart compo-
nent. Name the Chart component CHRT_MARKETSHARE. For the
Chart component, we need a data source with a layout with the sales
amount in the column and companies in the rows. Set the Chart type to
Pie.

Figure 11.12 Data Source Layout

Building a Sales Dashboard Application

400

11

Add a Text component to PNL_MARKETSHARE. Name the component
TXT_SELECTEDCOUNTRYLABEL. Set the CSS class to header.

Add last two charts Also add the last two Chart components for the history and the luxury
level. The history chart is chart type Line and the luxury level chart is
chart type Bar.

To be able to link these charts to the code in the first chart, the data
sources must have the same name as the data sources in the script code
of the first chart.

11.2.3 Setting the Top 10 Countries

Values for Text
components

Next, let’s focus on filling the Text components in page 2 with values.
We’ll also look at how the layouts of the delta figures are altered based
on their values.

The List Box components are filled like the examples we showed in the
previous section. They also use script code to change the variable values
in their On Select handlers.

Script code for
each Text

component

We need to write a lot of script code. Each Text component requires a
script line. Extra script line is needed for applying the layout. To avoid
duplicate coding, we use the Pagebook component’s On Select handler
to fill the values. We also chose this place because this part will only be
executed when the page is actually accessed.

In the Pagebook component On Select handler, we have the following
code. (For brevity’s sake we won’t write the code for all 10 rows. We
will use the third row as an example; the other rows are almost identi-
cal.)

if (PAGEBOOK_MAIN.getSelectedPageIndex() == 1)
{
//2nd page setup top 10 companies.

LST_TOP3COUNTRY.setItems(DS_
TOP03.getMemberList("ZCOUNTRY", MemberPresentation.INTERNAL_
KEY, MemberDisplay.TEXT, 1));

Building the Application

401

11.2

TXT_TOP3COUNTRY.setText(LST_TOP3COUNTRY.getSelectedText());
TXT_TOP3_SALES.setText(DS_
TOP03.getDataAsString("4UI2Y4WGS336B7BRTKB18T1VN", {}));
TXT_TOP3_DELTA.setText(DS_
TOP03.getDataAsString("4UI2XJZP5VZPLUDRXPXLVGJPF", {}));
//Apply layout based on delta %
TXT_TOP3_DELTA.setCSSClass(messageclass +

DS_
TOP03.getConditionalFormatValueExt("4UI2XJZP5VZPLUDRXPXLVGJPF
", {}));

In the example code, we see that there is a separate data source for this
row in the table. A data source is defined for each row. We have to take
an extra step to get the country from the rows, which is to fill a List Box

component with the one item. Using the item, we transfer the country
value to the Text component.

We get the sales amount and the delta amount by using the get-
DataAsString method from the data source.

Define the
CSS class

For the layout we use the getConditionalFormat method. Using the
exceptions in the BEx queries, we get a value from 1 to 5. We use that to
define the CSS class for each delta value.

Advancing to the Next 10 Countries

Variable in BEx
queries

To be able to go to the next 10 countries, we use a variable in the under-
lying BEx queries. When clicked, this button will set the number 10
positions higher and the query variable will be changed. The queries
will then produce the new list of countries based on the new variable
value.

APPLICATION.setVariableValueExt("TOPN", LISTBOX_TOPN.getSelect-
edValue());
BUTTON_PREVIOUS10.setVisible(true);

We know that once this button is clicked, the countries that are visible
for the user are at least number 11 to 20 or higher. Knowing this, we can
set the visibility of the button to go back up the list to true.

Building a Sales Dashboard Application

402

11

11.2.4 Creating a Top N Query

Ten data sources The application works with top n lists in the first page. In the second
page, there are 10 data sources: one data source for each row in the list.
Now let’s learn how to use variables to build a flexible top n query and
how to set up a query to show single countries in the top 10 list.

In the top n query, we used a query variable. The value for this variable
was set using the List Box component in the application. When you
build a BEx query, you can set up conditions. A condition is a filter on
the key figure, and one of the condition operators is the TOP N condition,
where we define N as a manual variable. This is the variable that we
change at runtime by selecting a value in the List Box component.

In Figure 11.13 you see how the condition in the BEx query was set up.

Figure 11.13 Top N Variable in BEx Query Condition

Building the Application

403

11.2

Creating a BEx Query to Get the Company in Third Place

Combine
conditions in a
BEx query

To give you a general idea of how to view a single company that has a
particular position in a ranking order, we are going to show you how to
combine conditions in a BEx query to achieve this.

First we make a combination of a Top N condition and a Bottom N con-
dition like the example in Figure 11.14.

Again, the Top N condition is defined as already shown in Figure 11.13.
For the Bottom N condition we use another variable (Figure 11.15).

The combination of these two conditions can set the query up to give us
one country. For example, if we want the third position from a list of ten
countries, we need to combine the top three country condition with the
bottom eight condition. As you can see in Figure 11.16, there is only
one rank that fulfills both conditions.

Figure 11.14 Top N and Bottom N Conditions

Building a Sales Dashboard Application

404

11

Set variables to
view rankings

By setting variables in the application, you can use this query to get any
rank you wish. For example, in our list of countries we have a total of
216 countries. If we want the 32nd country, we combine the top 32
with the bottom 183.

Defining BEx Query Exceptions

To get the layout for the target deltas, we used BEx query exceptions.
We got values ranging from 1 to 5 back from the data source based on

Figure 11.15 Bottom N condition with Variable ZIV_BOTN

Figure 11.16 Combination of Top Three and Bottom Eight Conditions

Summary

405

11.3

the rules in the query. We defined the exception in the query as shown
in Figure 11.17.

Maximum amount
of exception levels

The maximum number of exception levels you can define is nine. We
used the top five numbers so we could concatenate the exception num-
ber to a CSS class named alertlevel. When the exception level is five,
then the CSS class alertlevel5 will be assigned to the relevant compo-
nent.

11.3 Summary

In this chapter, you saw another example of an advanced application
built using Design Studio. We discussed the way it worked, how it was
set up, and the techniques we used to give the application its necessary
functionality.

Figure 11.17 Query Exception

407

The future of Design Studio has a lot to offer. Let’s take a look
at it in this last chapter of the book.

12 Outlook for SAP BusinessObjects
Design Studio

Mobility at SAPAs you may know, SAP has spent the last few years focusing on their
mobile strategy. Their goal is to enable the mobilization of information,
and to give users the possibility to get instant answers and turn these
new possibilities into strategic use cases for increased productivity (Fig-
ure 12.1).

Figure 12.1 SAP Mobile BI Strategy

Outlook for SAP BusinessObjects Design Studio

408

12

Work on tablets
and smart phones

Design Studio fits well into this strategy, as it is designed to work with
tablets and smart phones but also works directly on the backend systems
of SAP NetWeaver BW and SAP HANA. With the added functionality of
SAP mobile technologies, users are able to share and communicate
information to other people from their devices.

Because of its importance to mobility and to SAP in general, this chapter
will take a look at the roadmap for Design Studio. As you can see in Fig-
ure 12.2, the main focus of the Design Studio roadmap is on expanding
functionality for the next release.

More BEx functionalities will be incorporated, the SDK program will be
introduced and further expanded, additional data sources will be made
available, offline scenarios will be possible, and the number of ways that

Figure 12.2 Design Studio Roadmap

Outlook for SAP BusinessObjects Design Studio

412

12

12.4 Mobilize, Visualize, and Unify

SAP
BusinessObjects

Dashboards
Mobilize

To sum it all up, the future direction of Design Studio is built on the
themes mobilize (Figure 12.5), visualize (Figure 12.6), and unify (Figure
12.7). For the mobilize theme, the goal is to have applications for mobile
devices. These dashboards and applications need to be deployed easily
and securely.

Visualize To achieve the visualize theme, work is being done to build a common
visualization engine that will be used across multiple applications. In the

Figure 12.5 Mobilize

Mobilize, Visualize, and Unify

413

12.4

future, each tool will have access to the same visualizations. Further-
more, an SDK will be available for parties to build their own custom
visualizations on top of the standard library.

UnifyFor the unify theme, Design Studio shows that one tool can build all
kinds of applications. We see in the roadmap that other data sources,
such as universes and the OData protocol, are planned, which will fur-
ther accomplish this goal. And, as Design Studio applications are based
on HTML5, a single runtime for web and mobile is also guaranteed.

Figure 12.6 Visualize

Outlook for SAP BusinessObjects Design Studio

414

12

12.5 Summary

In this chapter we described the outlook of Design Studio, including its
future functionality and direction.

Figure 12.7 Unify

415

Appendices

A Using CSS .. 417

B Tips for Using SAP BusinessObjects Design Studio and
SAP BusinessObjects Analysis, Edition for Microsoft

Office ... 425

C SAP BusinessObjects Mobile and SAP BusinessObjects
Design Studio . 431

D Comprehensive List of Methods and Parameters . 439

417

A Using CSS

CSS plays a very important role in the layout settings of a Design Studio
application. CSS is first applied by the standard theme, then by the cus-
tom CSS class, which you can add to the application, and—finally—by
editing the CSS style of individual components. For faster development,
it is very important to have a standard set of classes available. The devel-
oper then only has to assign classes to components to use the predefined
style.

Before you create applications, it is advisable to think about how you
want to deal with custom CSS files. Basically, there are three strategies
that you can apply:

� Centralized
In this scenario, there is a single CSS file on the SAP BI platform that
will be used by every application. The advantage is that every applica-
tion will have the same look and feel, as they all will be using the
same CSS file and thus the same colors and fonts. The disadvantage is
that there is only limited freedom for applications to apply their own
format. The only way is to use the CSS Style property in components.

� Federated
In this scenario, you have a central CSS file—but when you start the
development of an application, you copy the central CSS file to the
repository of the application. You can then alter the CSS of this copied
file. The advantage here is that everyone has the same starting point
and still has some flexibility. The disadvantage is that when the cen-
tral CSS file changes, you have a rollout scenario to deal with.

� Local
In this scenario, everyone can build his own CSS file. The advantages
and disadvantages are exactly the opposite of the centralized scenario.
Now there is a lot of freedom, but every application will look differ-
ent and different standards will be applied.

In this appendix, we’ll give you some basic information about working
with CSS files.

Tips for Building CSS Files

419

A.2

A.2 Tips for Building CSS Files

In this section we are going to share a couple of common guidelines for
writing CSS files. These guidelines will help you in building and main-
taining custom CSS files. It is especially important to follow these rules
when you build a master CSS file that is to be used by many applications.

A.2.1 Give the Classes Appropriate Names

Do not name a class for the style it performs; name it for its function.
For example,

.redmessage { background-color: yellow }

could also be named

.alertmessage { background-color: yellow }

In addition, when assigning a class to a Text component that is supposed
to give an alert message, the latter naming method is much more logical
and easier to understand.

A.2.2 Try to Keep the Declarations in One Line

Although keeping your code on multiple lines may look nicer, it doesn’t
help you to find the class you’re looking for. If you know that each line
starts with a new class, you only have to scan the first word of each line.

A.2.3 Use Shorthand Code

Shorthand code is a lot easier to write than the full code. Furthermore,
having fewer characters in the CSS file increases the speed of the appli-
cation (although, admittedly, not very much).

For example, if you want to set the background settings with CSS, the
full code would be:

.mycustomclass
{
background-image:url('img_tree.png');

Changing the Inner Style of Components with CSS

421

A.3

{ font-family:Arial,Helvetica,Lucida,Sans-
Serif; color:#000; margin:1em 0;}

With grouping:

.class1 .class2 .class3
{ font-family:Arial,Helvetica,Lucida,Sans-
Serif; color:#000; margin:1em 0;}

A.3 Changing the Inner Style of Components with
CSS

For really fine-tuning the layout, you can alter the inner style of the stan-
dard components. To be able to do this, you need to know the CSS
classes that SAP assigned to the components. By using these classes
within a class of your own, you can assign a class to a component, which
results in a changed layout.

First you need to know how to look for the CSS classes that are defined
for the components:

1. Create a new application and put one Crosstab component on the
canvas. For the rest leave the application empty. Set the application
theme to Mobile iPad.

2. Within Google Chrome (or another browser), you can choose the
option Inspect Element. You will see the code underlying the appli-
cation as shown in Figure A.1. Double-clicking library.css in the
Crosstab directory opens the CSS file (Figure A.2) that holds the
classes that build the layout of the Crosstab component.

Now you can apply this knowledge in your own custom CSS file. There
are two ways.

You can force the application to always apply your standard. In your CSS
file apply the following code:

.sapzencrosstab-DataCellTotal { property: value;
property: value}

Using CSS

422

A

Alternatively, you can change the layout of the Crosstab component
when there is a CSS class assigned to that component. In your CSS file,
apply the following code:

Figure A.1 Finding CSS Code in the Application

Figure A.2 CSS Code

Changing the Inner Style of Components with CSS

423

A.3

YourCSSClass.sapzencrosstab-
DataCellTotal { property: value; property: value}

The first option has the advantage that you can apply your company’s
style without having to assign classes. The second option has the advan-
tage that you keep the SAP standard CSS themes in place.

Tips for Using Design Studio and SAP BusinessObjects Analysis

426

B

B.1 Creating a Design Studio Application

It is possible to transfer the components of an SAP BusinessObjects
Analysis workbook to a new Design Studio application. The following
components are supported:

� Crosstab components

� Chart components (pie, line, column, bar, surface, radar, bubble, and
scatter charts)

� Filter components

To transfer components, follow the steps below:

1. Open SAP BusinessObjects Analysis.

2. Open an existing workbook or create a new one (Figure B.1).

3. Check whether the Create Web Application icon is present in the
Analysis ribbon (Figure B.2).

Figure B.1 SAP BusinessObjects Analysis

Creating a Design Studio Application

427

B.1

4. If this icon is not available, go to Settings � Advanced Settings and
select the option for Show “Create Web Application” in Tools

Group (Figure B.3). Click OK.

5. Make sure that Design Studio is not currently running. If it is, save
your work and close Design Studio.

6. Select the workbook sheet you want to transfer to Design Studio.

7. Click the Create Web Application button in the Analysis ribbon (Fig-
ure B.2).

8. Design Studio starts now. Enter your credentials and click OK to log
on to Design Studio.

9. You will now see a new Design Studio application based on the Anal-
ysis workbook, including the components and data sources (Figure
B.4). You can continue working on this application from here.

Figure B.2 Create Web Application Icon

Figure B.3 SAP BusinessObjects Analysis Settings

Tips for Using Design Studio and SAP BusinessObjects Analysis

428

B

B.2 Smart Copying Data Sources

Instead of transferring a whole workbook from SAP BusinessObjects
Analysis, we can also copy only the data source from the workbook.

1. Open SAP BusinessObjects Analysis.

2. Open an existing workbook or create a new one.

3. Now right-click the result table and select Smart Copy from the con-
text menu (Figure B.5).

4. In Design Studio, right-click the Data Sources folder in the Outline

view (Figure B.6). Select Smart Paste. The data source is now added
to the Design Studio application.

Another option is to right-click the Layout folder in the Outline view
and select Smart Paste. In this case, not only the data source is added to
the Design Studio application, but also a new Crosstab component is
added and already assigned to the new data source.

Figure B.4 New Design Studio Application Based on SAP BusinessObjects Analysis

Smart Copying Data Sources

429

B.2

Figure B.5 Smart Copy Option in SAP BusinessObjects Analysis

Figure B.6 Smart Paste Feature in Design Studio

Using Content

433

C.3

C.3 Using Content

Before you can use content from the SAP BusinessObjects BI platform,
you have to make that content available for mobile usage. This should be
done by filing the content documents—for example, a Design Studio
application—in the Mobile category. This is explained in Section 4.4.4
of Chapter 4.

C.3.1 Browsing the Application

After connecting to the SAP BusinessObjects BI platform, the available
content shows up on the home screen of the application (Figure C.3).
Here you can open a report, dashboard, or application and refresh it.
You can also view information about a document by tapping the infor-
mation icon (i) and assign it to a custom category (Figure C.4). By tap-
ping the plus icon (+), the content will be downloaded and can be used
offline.

Figure C.2 Connection Setup

SAP BusinessObjects Mobile and SAP BusinessObjects Design Studio

434

C

Figure C.3 Browsing through Mobile BI Content

Figure C.4 Information Screen

Using Content

435

C.3

C.3.2 Running SAP BusinessObjects BI Content

When running a Design Studio application in SAP BusinessObjects
Mobile, the exact same functionality is available as when you execute
the same application in a browser. The only difference is that now you
use your fingers instead of the mouse to interact with the components.

In Figure C.5, you can see the first tab of the Design Studio application
that we created back in Chapter 6, displayed in full-screen mode. We
selected the Headcount measure and tapped a data point on the chart.
This action resulted in a detail box giving the exact value of the tapped
data point.

Figure C.6 shows the second tab of the application, which appears after
you tap the Employee List tab. Here the Dropdown Box component is

Figure C.5 Design Studio Application in SAP BusinessObjects Mobile: Part 1

SAP BusinessObjects Mobile and SAP BusinessObjects Design Studio

436

C

selected, and a selection is made for department 1300 – Frankfurt. The
filtered data is shown in the Crosstab component.

C.3.3 Collaboration Features

When a report, dashboard, or application is running, a settings toolbar
can be made visible by tapping the settings button in the upper-right
corner of the screen (Figure C.7). This gives you access to some interest-
ing collaboration features.

Figure C.6 Design Studio Application in SAP BusinessObjects Mobile: Part 2

Figure C.7 Settings Toolbar

Using Content

437

C.3

The content can be shared and discussed with colleagues over the SAP
Jam collaboration platform. If you want to add some texts, lines, or
boxes; blur parts of the content; or crop the output of the content, you
can use the Annotation option (Figure C.8). You can even record a
voice memo as an annotation (Figure C.9). Finally, you can send an
email that contains a screenshot of the content (annotations included),
with links to the content (Figure C.10).

Figure C.8 Annotation Options

Figure C.9 Recording a Voice Memo

SAP BusinessObjects Mobile and SAP BusinessObjects Design Studio

438

C

Figure C.10 Sending an Email

439

D Comprehensive List of Methods and
Parameters

D.1 Application Component

Methods Descriptions

Alert Opens a message box.

Parameter
� Message type string: message text

createErrorMessage Creates an error message that is visible in the
Message view.

Parameter
� Message type string: message text

createInfoMessage Creates an info message that is displayed in the
Message view.

Parameter
� Message type string: message text

createWarningMessage Creates a warning message that is displayed in the
Message view.

Parameter
� Message type string: message text

getInfo Returns analysis application information.

log This method creates a message in the error log for
analysis. If you have a complex piece of script and
it does not work properly, you can use this for
debugging purposes.

Parameter
� Message type string: message text

openNewWindow Opens a new browser window with the specified
URL.

Parameter
� newURL type string: URL

Comprehensive List of Methods and Parameters

440

D

D.2 Button Component

openPromptDialog Opens a dialog box.

Parameters

� Width type integer: width of the dialog box

� Height type integer: height of the dialog box

setVariableValue Sets query variable values in the internal key for-
mat and executes the data source query again.

Parameters

� Variable type variable: query variable to
change

� Value type string: value to set in internal key
format

setVariableValueExt Sets query variable values in the external key for-
mat, then executes the data source query again.

Parameters

� Variable type variable: query variable to
change

� Value type inputstring: value to set in exter-
nal key format

openNewWindow Opens a new browser window with the specified
URL.

Method Description

getText Gives the text that is displayed on the Button

component.

getEnabled Tells whether the Button component is enabled.

setText Sets the text that is shown on the Button compo-
nent.

Parameter
� Text type string: message text

Methods Descriptions

Chart Component

441

D.3

D.3 Chart Component

setEnabled Sets the Button to enabled or disabled depend-
ing on the parameter value.

Parameter
� Enabled type Boolean: specifies whether to

enable or disable the button

Method Description

getChartType Gives the name of the Chart component.

getSelectedMember Gives you information about the selected data point.
With the parameter dimension, you define the dimen-
sion value you want to see.

Parameter
� Dimension type Dimension: dimension of the

selected members

getStyle Shows the name of the Chart component style.

isVisible Shows the Chart component’s visibility status.

setChartType Changes the Chart component type.

Parameter
� chartType type ChartType: chart type to set

setStyle Changes the Chart component style.

Parameter
� Style type ChartStyle: chart style to set

setVisible Sets the Chart component’s visibility.

Parameter
� Visible type Boolean: specifies whether to show

or hide the component

showTotals Shows or hides (sub)totals.

Parameter
� Visible type Boolean: specifies whether to show

or hide the subtotals

Method Description

Comprehensive List of Methods and Parameters

442

D

D.4 Checkbox Component

swapAxes Swaps the axes as they appear in the data source for a
different chart perspective.

Parameter
� swapAxes type Boolean: specifies whether to swap

axes

Method Description

getText Returns the text with the Checkbox component.

isChecked Returns True if the Checkbox component is selected
or False if the Checkbox component is not selected.

isEnabled Returns True if the Checkbox component is enabled.

isVisible Returns True if the Checkbox component is visible.

setChecked Selects the Checkbox component when the parameter
is set to True. Otherwise, the Checkbox component is
not selected.

Parameter
� Checked type Boolean: specifies whether the

Checkbox component should be checked or
unchecked

setEnabled Sets the Checkbox component to enabled when the
parameter is True. Otherwise, it is disabled.

Parameter
� Checked type Boolean: specifies whether the

Checkbox component should be enabled or dis-
abled

setText Sets the Checkbox component text.

Parameter
� Text type String: Checkbox component text

Method Description

Crosstab Component

443

D.6

D.5 Convert Component

D.6 Crosstab Component

setVisible Shows the component when the parameter is True,
but not when it is False.

Parameter
� Visible type Boolean: specifies whether to show

or hide the component

Method Description

floatToString Converts a float number type value to a string and
applies a formatting pattern. English local is standard,
but you can apply your own formatting in a parameter.

floatToString-
UsingLocale

Converts a float number type to a string and applies
the local formatting pattern. You can set the number
of decimals.

stringLength Returns the length of the string type value given in the
parameter.

stringToFloat Converts a string type to a float number.

stringToFloat-
UsingLocale

Converts a string type to a float number using the local
formatting pattern.

stringToInt Converts a string type to an integer.

Substring Returns a substring of the original string based on the
start and end positions set in the parameters.

Method Description

removeSelection If a cell is selected, this method will remove the selec-
tion.

Method Description

Comprehensive List of Methods and Parameters

444

D

D.7 Data Source Alias Component

getSelectedMember Provides information about the dimension of a
selected cell.

Parameter
� Dimension type Dimension: dimension of the

selected member

Method Description

assignDataSource Assigns a new data source to the alias. You can select a
system, a query, and whether it has to load immedi-
ately.

Parameters

� Datasourceconnection type Datasourceconnec-
tion: connection alias

� Datasourcetype type datasourcetype: type of
data source

� Datasourcename type datasourcename: name of
data source

� Optional loadnow type Boolean: specifies if the
data source is loaded after assignment

assignHierarchy Assigns a hierarchy to a dimension.

Parameters

� Dimension type dimension: dimension to be dis-
played as hierarchy

� Hierarchy type hierarchy: hierarchy to be dis-
played

clearAllFilters Removes all filters on all dimensions.

clearFilter Removes filter for dimension.

Parameter
� Dimension type dimension: dimension where fil-

ters need to be removed

Method Description

Data Source Alias Component

445

D.7

getConditional-
FormatValue

Gives the conditional format applied. 0 is no format.
1-9 is the priority.

Parameters

� Measure type measure: measure corresponding to
returned value

� Selection type multidimfilter: combination of
dimension members in internal key format that
specifies the data cell selection

getConditional-
FormatValueExt

Gives the conditional format with the use of external
format keys.

Parameters

� Measure type measure: measure corresponding to
returned value

� Selection type multidimfilter: combination of
dimension members in internal key format that
specify the data cell selection

getData This results in the value of a single data cell from the
dataset. A data cell holds information about the value,
formatted value, scaling factor, and unit of measure. A
Data Cell is a component in itself; we will describe it
in the next subsection.

Parameters

� Measure type measure: measure corresponding to
returned value

� Selection type multidimfilter: combination of
dimension members in internal key format that
specify the data cell selection

getDataAsString This results in the return of a single data cell from the
dataset with external member keys.

Parameters

� Measure type measure: measure corresponding to
returned value

� Selection type multidimfilter: combination of
dimension members in internal key format that
specify the data cell selection

Method Description

Comprehensive List of Methods and Parameters

446

D

getFilterText This method results in the filter value of the filter in
the dimension passed in the parameter.

Parameter
� Dimension type Dimension: dimension of the data

source

getFilterText Returns the filter value of a dimension. As this method
returns the text of the value, you use this for displaying
the filter.

Parameter
� Dimension type Dimension: dimension of the data

source

getInfo Returns data source information, for example, the key
date or the technical name.

getMemberList Returns a list of dimension members.

Parameters

� Dimension type dimension: dimension of the data
source

� memberPresentation type memberPresentation:
presentation of the member keys

� memberDisplay type Memberdisplay: textual dis-
play of members

� Maxnumber type integer: maximum number of
members to be returned

� Optional allmembertext type String: text of the
item that represents all members

getStaticFilter-
Ext

Returns the static filter value of a dimension.

Parameter
� Dimension type dimension: dimension of the data

source

getStaticFilter-
Text

Returns the static filter value of a dimension. As this
method returns the text of the value, you use it for dis-
playing the filter.

Parameter
� Dimension type dimension: dimension of the data

source

Method Description

Data Source Alias Component

447

D.7

getVariableValue-
Ext

Returns the value of the variable in the external key
format.

Parameter
� Variable type variable: data source variable

getVariableValue-
Text

Returns the value of the variable. Use this method to
display the value of the variable.

Parameter
� Variable type variable: data source variable

loadDataSource Loads the assigned data source.

moveDimensionAf-
ter

Adds the dimension after another dimension in the
data source.

Parameters

� Dimension type dimension: dimension to be added
to the axis

� Otherdimension type dimension: dimension
where the above dimension is placed after

moveDimensionBe-
fore

Adds the dimension before another dimension in the
data source.

Parameters

� Dimension type dimension: dimension to be added
to the axis

� Otherdimension type dimension: dimension
where the above dimension is placed before

moveDimensionTo-
Columns

Moves the dimension to a selected column in the data
source.

Parameters

� Dimension type dimension: dimension to be
moved to a column

� Optional pos as integer: position on the axis

moveDimensionToR-
ows

Moves the dimension to a selected row in the data
source.

Parameters

� Dimension type dimension: dimension to be
moved to a row

� Optional pos as integer: position on the axis

Method Description

Comprehensive List of Methods and Parameters

448

D

reloadData Reloads the data from the source. When the source
data changes, this is a useful method.

removeDimension Removes the dimension from the row or column.

Parameter
� Dimension type dimension: dimension to be

removed

setFilter Sets a filter for a dimension in the internal key format.
If there is already a filter on the dimension, that filter is
removed.

Parameter
� Dimension type dimension: dimension to be fil-

tered

� Filter type array of filter: filter to be set

setFilterExt Sets a filter for a dimension in the external key format.
If there is already a filter on the dimension, that filter is
removed.

Parameter
� Dimension type dimension: dimension to be fil-

tered

� Filter type array of filter: filter to be set

setMemberDisplay Changes the member display for a data source dimen-
sion. Options are KEY, TEXT, KEY + TEXT, or TEXT +
KEY.

Parameters

� Dimension type dimension: dimension for which a
member display is set

� Memberdisplay type memberdisplay: display mode
of members

swapDimensions Two dimensions change place. This only works when
at least one of the dimensions is placed in the row or
column.

Parameters

� Dimension1 type dimension: first dimension to be
swapped with dimension2

� Dimension2 type dimension: second dimension to
be swapped with dimension1

Method Description

Date Field Component

449

D.8

D.7.1 Data Cell Component

A Data Cell component is an object providing information about a data
cell or result set. This component is a result that is derived from methods
such as datasource.getdata.

D.8 Date Field Component

unassignHierarchy Unassigns a hierarchy from the dimension.

Parameter
� Dimension type dimension: dimension that should

not be displayed as a dimension anymore

Method Description

formattedvalue The formatted value of this cell. The scaling factor has
already been applied to this value. This value also
reflects the user locale and number settings of the BEx
Query Designer.

scalingFactor Scaling factor in powers of 10 that has been applied to
the value of this cell.

unitOfMeasure Unit of measure of the value of this cell.

Value Raw data value of this cell.

Method Description

getDate Returns the date.

isEnabled Returns True if the component is enabled.

setDate Sets the date on the component.

Parameter
� Date type string: date to be set in Y YMMDD

Method Description

Comprehensive List of Methods and Parameters

450

D

D.9 Dimension Filter and Filter Panel Components

D.10 Image Component

setEnabled Allows you to enable or disable the component.

Parameter
� Enabled type Boolean: specifies whether the com-

ponent should be enabled or disabled

Method Description

Cancel Removes entered filters that haven’t been submitted
yet.

getDimensionName The name of the dimension is returned (only with the
Dimension Filter component).

Submit Applies the filter values that have been entered.

Method Description

getClickImage Returns the path of the image file that is shown when
clicked.

getHoverImage Returns the path of the image file that is visible when
the mouse hovers over the Image component.

getImage Returns the path of the image file that is initially visi-
ble.

getOpacity Returns the opacity value. 0 is fully transparent; 100 is
fully visible.

setClickImage Sets the image file to show when the Image compo-
nent is clicked.

Parameter
� Imageurl type String: path of image file

Method Description

Input Field Component

451

D.11

D.11 Input Field Component

setHoverImage Sets the image file to show when the mouse hovers
over the Image component.

Parameter
� Imageurl type String: path of image file

setImage Sets the main image.

Parameter
� Imageurl type String: path of image file

setOpacity Sets the opacity of the image. 0 is fully transparent;
100 is fully visible.

Parameter
� Opacity type integer: sets opacity for image

Method Description

getValue Returns the value that is entered in the Input Field

component.

isEnabled Returns True if the component is enabled or, other-
wise, False.

setEnabled Sets the component to enabled or disabled.

Parameter
� Enabled type Boolean: specifies whether the com-

ponent should be enabled or disabled

setValue Sets the value of the Input Field component.

Parameter
� Value type string: input value

Method Description

Comprehensive List of Methods and Parameters

452

D

D.12 Pagebook Component

D.13 Panel Component

The Panel component is a basic container that helps you to organize
other components. Therefore, the Panel component has only the
.onClick method. A handler method allows you to run the script in a
component from another component.

D.14 Popup Component

Methods Description

getSelectedPage Returns the name of the currently selected page.

getSelectedPage-
Index

Returns the index value of the selected page. If the
first page is currently selected, then the index is 0.

setSelectedPage-
ByName

Selects the page by passing the name of the page in
the parameter.

Parameter
� Name type string: name of the page to select

setSelectedPage-
Index

Selects the page by passing the index number of the
page in the parameter.

Parameter
� Index type integer: index of the page to select

Methods Description

hide The Popup component is not visible anymore.

isShowing Returns True if the Popup component is currently visi-
ble.

show The Popup component is visible.

Selection Components

453

D.15

D.15 Selection Components

The selection components are components where you can select a value
from a list of members. These components are:

� List Box

� Radio Button Group

� Dropdown Box

Method Description

getSelectedText Returns the text of the selected item. Each item in the
component has a key and an item.

getSelectedValue Gets the selected value key.

isEnabled Allows you to enable or disable the component.

setEnabled The component can be set to enabled or disabled with
this method.

Parameter
� Enabled type Boolean: specifies whether the com-

ponent should be enabled or disabled

setItems Assigns a list of items to the components. If there were
previous items in the list, these items are removed and
replaced with the new items passed in the parameter.

Parameter
� Value type valuetextlist: list of value-text pairs

setSelectedValue Sets the status selected to the item with the specified
key.

Parameter
� Value type listvalue: value of the item to be

selected

Sort Sorts the items in alphabetical order. An optional
parameter can be used to set the list in descending
order.

Parameter
� Optional asc type Boolean: specifies if the sor-

torder is ascending or descending

Comprehensive List of Methods and Parameters

454

D

D.16 Tabstrip Component

D.17 Text Component

D.18 Visual Components: Common Methods

Method Description

getSelectedTab Returns the name of the currently selected tab.

getSelectedTabIn-
dex

Returns the index value of the selected tab. If the first
page is currently selected, then the index is 0.

setSelectedTab-
ByName

Selects the tab by passing the name of the page in the
parameter.

Parameter
� Name type string: name of the tab to be selected

setSelectedTabIn-
dex

Selects the tab by passing the index number of the
page in the parameter.

Parameter
� Index type integer: tab to be selected

Method Description

getText Returns the text currently in the Text component.

setText Sets the text that is shown in the Text component.

Parameter
� Text type string: text to set in the component

Method Description

getBottomMargin Gives the bottom margin of the component as long as
Bottom Margin is set to a number (not Auto).

getCSSClass Returns the CSS class that is assigned to the compo-
nent.

getHeight Returns the height of the component as long as Height

is set to a number (not Auto).

Visual Components: Common Methods

455

D.18

getLeftMargin Returns the left margin of the component as long as
Left Margin is set to a number (not Auto).

getRightMargin Returns the right margin of the component as long as
Right Margin is set to a number (not Auto).

getTopMargin Returns the top margin of the component as long as
Top Margin is set to a number (not Auto).

getWidth Returns the width of the component as long as Width

is set to a number (not Auto).

isVisible Returns whether the component is visible (True) or
not (False).

setBottomMargin Sets the bottom margin as long as Bottom Margin is
set to a number (not Auto).

setCSSClass Sets the CSS class of the component.

setHeight Sets the height of the component as long as Height is
set to a number (not Auto).

setLeftMargin Sets the left margin of the component as long as Left

Margin is set to a number (not Auto).

setRightMargin Sets the right margin of the component as long as
Right Margin is set to a number (not Auto).

setTopMargin Sets the top margin of the component as long as Top

Margin is set to a number (not Auto).

setVisible Sets the visibility of the component based on the
parameter value (True or False).

Parameter
� Visible type Boolean: specifies whether to show

or hide the component

setWidth Sets the width of the component as long as Width is
set to a number (not Auto).

Method Description

457

E The Authors

Xavier Hacking is an SAP BI specialist from Eind-
hoven, the Netherlands, and works as a consult-
ant for Interdobs. He has a master's degree in
Industrial Engineering and Management Science
from the Eindhoven University of Technology. He
has worked with a wide range of products from
the current SAP NetWeaver BW and SAP

BusinessObjects BI toolset, with a focus on dashboard development
within SAP environments.

Xavier co-authored SAP BusinessObjects Dashboards 4.0 Cookbook and is a
writer for SAP BusinessObjects Expert magazine. He is also part of the
Dutch BI Podcast, and blogs on all sorts of business-intelligence-related
topics at http://www.hackingsap.com. You can follow him on Twitter at
@xjhacking.

Jeroen van der A is a passionate SAP BI consultant
from the Netherlands working for Interdobs. He
has over 15 years of experience with business
intelligence and started using SAP products in
2005. Jeroen is focused on finding innovative
ways to use BI products to create added value, and
uses a broad range of products to achieve this goal.

Jeroen is a writer for the Dutch SAP user magazine VNSG and is part of
the Dutch BI Podcast. He writes regular blogs on http://scn.sap.com and
on http://www.interdobs.nl. You can follow him on Twitter at @hyroni-
mous.

459

Index

A

ABAP, 369, 371
Adaptive Processing Server, 113

create, 114
Analysis Application Service, 108, 112

initializing, 112
Analytic component

Crosstab component, 221
Dimension Filter component, 224
Filter Panel component, 227

Analytic view, 125
Analytical application, 81
Android, 432
Application, 23, 94

add data source, 145
advanced example, 349, 381
close, 144
create new, 140, 185
customer alerts, 65
customer list screen, 64
delete, 144
execute locally, 149
execute on BI platform, 149
exit, 150
human resources example, 183, 201,

202
interactivity, 263
letter to shareholders, 80
managing staff capacity, 72
monitoring wait times, 69
open, 144
operational management, 68
preferred startup mode, 150
recovery, 159
save, 145
template, 142

Application component
custom CSS, 206, 208
displayed message types, 207
force prompts on startup, 207
global script variables, 207

Application component (Cont.)
on startup, 207
position of message button, 207
position of message window, 207
properties, 206

Application design process, 183, 184
adding data, 188
executing the app, 201
formatting, 197
interactivity, 192
UI and visualizations, 184

Architecture, 93
Area chart, 339
Assignment statements, 267
Attribute, 172
Auto layout properties, 215

B

Backend connection, 162
Backend system, 375
Bar chart, 334
Bar combination chart, 336, 340
Basic component

Button component, 229
Checkbox component, 231
Date Field component, 232
Dropdown Box component, 234
Image component, 235
Input Field component, 237
List Box component, 238
Radio Button Group component, 241
Text component, 242

BEx Analyzer, 425
BEx query, 26, 160, 402

setup, 189
BEx Query Designer, 195
BEx Web Analyzer, 31, 51
BEx Web Application Designer, 31

application layers, 54
design environment, 53
functionality, 51

Index

460

BEx Web Application Designer (Cont.)
publishing, 57
setup, 52
vs. Design Studio, 41, 58
web items, 55

BI Action Language (BIAL), 27, 263
BI Launch Pad, 29, 32, 58
BI tool comparison

application examples, 59
component adjustment options, 58
components, 58
data connectivity, 59
data input options, 59
layout development flexibility, 59
mobile, 59
output format, 58
platform, 58
SAP HANA, 59
scripting options, 59
SDK, 59

BI tools
dashboarding and application creation,

34
discovery and analysis, 35
reporting, 32

Biapp file, 157
BICS, 48
Boolean expression, 266

call statement, 266
comparison, 266
constant, 266
multiple comparisons, 266

Boston Consultancy Matrix, 341
BOTTOM N condition, 403
Browser, 97, 149
Bubble chart, 341
Button component, 369, 372

CSS class, 230
icon, 230
name, 230
on click, 230
properties, 229
text, 230
visible, 230

C

Calculate Model button, 352
Calculation button, 373
Calculation view, 125
Call statement, 264

arguments, 265
component, 265
method, 265

Cascading Style Sheets (CSS) � CSS
Central Management Console (CMC), 95,

112, 162
Central Management System (CMS), 108
Chart component, 216, 288

additional properties, 221
chart type, 217
CSS class, 217
data source, 217
name, 217
on select, 217
properties, 217
show totals, 217
swap axes, 217
visible, 217

Chart types
100% stacked bar, 218, 335
100% stacked column, 218, 337
area, 218, 339
bar, 218, 334
bar combination, 218, 336
bubble, 219, 341
column, 218, 337
column combination, 218, 338
comparison, 347
crosstab, 340
horizontal area, 219, 339
horizontal line, 218, 333
horizontal waterfall, 219, 342
line, 184, 218, 333
multiple pie, 219, 344
multiple radar, 219, 345
pie, 219, 343
radar, 219, 345
scatter, 219, 346, 354
single number, 332
stacked bar, 218, 334

Index

461

Chart types (Cont.)
stacked column, 218, 337
stacked waterfall, 219, 343
types, 220
waterfall, 180, 219, 341

Checkbox component
enabled, 232
name, 231
on click, 232
properties, 231
selected, 232
text, 232
visible, 231

Client tool, 94, 132
required components, 97

CMOD, 370
Column chart, 337
Column combination chart, 338
Common layout properties

bottom margin, 214
height, 215
left margin, 214
right margin, 214
top margin, 214
width, 215

Component, 26, 147, 205, 253
add, 187
analytic category, 170, 216
Application component, 205
Application, CSS class, 210
Application, global script variables, 211
Application, on startup, 211
arrange, 175
basic category, 171, 229
button, 370
chart, 179, 184, 216
container category, 171, 243, 257
crosstab, 184, 187, 199
data cell, 449
distribute, 176
dropdown box, 184, 188
filtering, 262
grid layout, 356
hide, 175
list box, 239
maximize, 186

Component (Cont.)
naming conventions, 259
radio button group, 184, 187
reload, 150
show, 175
tabstrip, 184, 355
tips and tricks, 253, 257, 259

Conditional statements, 265
Configuration, 93
Container component

Grid Layout, 244
Pagebook, 247
Panel, 249
Popup, 250
Tabstrip, 252

Content Assistance, 272, 273
Crosstab component, 375

always fill, 223
column limit, 222
CSS class, 223, 289, 365
data source, 222
enable selection, 223
name, 222
on select, 223
pixel-based scrolling, 222
properties, 222
row limit, 222
show scaling factor, 223
visible, 222

CSS, 27, 205, 210, 212, 243, 357, 387,
417
centralized scenario, 417
federated scenario, 417
local scenario, 417
other resources, 397, 419, 420
strategies, 417
structure of a file, 418
tips, 419

D

Dashboards, 23, 24, 41, 42, 82
Data binding, 45
Data Field component

properties, 232

Index

462

Data source, 147, 162, 171, 188
add, 145, 190
initial view, 172, 190, 191
pause refresh, 173
show prompts, 148

Data Source Alias component, 272
Data visualization, 23
Date, 234
Decimal places, 174
Design principles, 327

control your screen, 330
don’t make users think, 327
don’t make users wait, 328
emphasize features, 329
keep it simple, 329
make buttons obvious, 329
manage user focus, 328
use conventions, 330

Dimension Filter component
CSS class, 226
data source, 226
dimension, 226
dimension name, 226
display mode, 226
name, 225
on apply, 226
popup width/height/position, 226
properties, 225
target data sources, 226
visible, 225

Dimensions, 172, 188, 227, 309
Dimensions and measures

change, 307
Dropdown Box component, 291, 453

CSS class, 235
enabled, 234
items, 235
name, 234
on select, 235
properties, 234
visible, 234

DuPont analysis, 19
DuPont analysis application, 349, 350

building the application, 355
Button component, 370
Company Comparison tab, 365, 379

DuPont analysis application (Cont.)
comparing results, 379
components, 359
CSS file, 357
data sources, 367
global variables, 366
input from outside application, 354
layout, 355
main screen, 350
manual input, 351, 352, 372
model, 350
OLAP input, 352, 375
on startup, 368
overview, 350
results, 354
scripting, 372, 375, 379
structure, 355
write back, 369

E

Eclipse, 25
Edit menu, 151

copy, 151
cut, 151
delete, 152
paste, 151
redo, 151
undo, 151

Enabled, 230
Event handlers, 270, 271
Execute

locally, 149, 201
on BI platform, 149

Expressions, 267, 268
types, 268

External parameters, 351
External URL, 350

F

Filter Panel component
CSS class, 228
data source, 228
dimension name, 228

Index

463

Filter Panel component (Cont.)
dimensions, 228
display mode, 228
member display, 228
name, 228
on apply, 228
on cancel, 228
properties, 228
target data sources, 228
title, 228
visible, 228

Filters, 235
predefined buttons, 64
set method, 398

Flexibility, 316
Future developments, 68

G

General ledger input, 353
Global variable, calculated, 367
Graphomate, 409
Grid Layout component

column width, 245
name, 245
number of columns, 245
number of rows, 245
properties, 245
row height, 245

H

Help menu, 165
Hierarchy, 172
HTML5, 25

I

Image component
click image, 236
CSS class, 236
hover image, 236
image, 236
name, 236

Image component (Cont.)
on click, 236
opacity, 236
properties, 236
visible, 236

InfoCubes, 372, 377
InfoProviders, 26
Input Field component

CSS class, 238
enabled, 238
name, 237
on change, 238
properties, 237
value, 238
visible, 238

Insert numbers, 354
Installation, 93, 98

Analysis Application Support for Mobile
Services, 108

analysis application web component, 108
document guides, 98
extract files, 102
full or custom, 107
software components, 99
wizard, 105

Integrated development environment
(IDE), 26, 139

Integrated Planning (BW-IP), 57, 68, 410
Interactivity, 235, 263
iView template, 130

J

Java Support Package Manager (JSPM),
129

JavaScript, 27
JSON, 277

K

Key figures, 79
Key performance indicator (KPI), 34, 64,

88

Index

464

L

Layout Editor, 169, 185
Layout menu, 152

align, 152
distribute, 153
maximize component, 153

Lifecycle Management Console (LCM),
95

List Box component, 291, 373, 379, 402,
453
CSS class, 239
enabled, 239
items, 240
name, 239
on select, 240
visible, 239
vs. Dropdown Box component, 239

Load in script, 213
Local mode, 136, 150, 157

repository folder, 150
Log level, 163
Logon, 135

M

Measure, 172, 188
Member selection, 159
Menu bar, 140

application menu, 140
Methods, 264, 281

Application component, 285, 439
Button component, 287, 440
Chart component, 288, 441
Checkbox component, 288
component class, 286
Convert component, 281, 443
Crosstab component, 290
Data Source Alias component, 282, 444
Date Field component, 290
Dimension Filter component, 290, 450
Filter Panel component, 290
Image component, 292, 451
Input Field component, 293
Pagebook component, 293
Panel component, 294, 452

Methods (Cont.)
Popup component, 294
Tabstrip component, 294
Text component, 295

Microsoft Excel, 43
Mobile, 29
Mobile category, 433

creating, 120
Mobile device, 97, 202

send to, 168
Mobile Server, 121, 432
Mobility, 25, 407, 412

make content available, 433
running Design Studio content, 435

MS Excel, 425

N

New Statement Wizard, 273, 274

O

OData, 411
ODBC Data Source Administrator, 162
OLAP connection, 95, 122, 125, 350

define authentication method for BW, 124
SAP HANA, 125
SAP NetWeaver BW, 122

On select, 196
Operators, 267

P

Pagebook component
CSS class, 247
name, 247
on select, 248
page caching, 248
properties, 247
selected page index, 247
transition direction, 248
transition effect, 247
visible, 247

Panel component
CSS class, 250
CSS styles, 250

Index

465

Panel component (Cont.)
enabled, 250
name, 249
on click, 250
properties, 249
visible, 249

Performance, 328
Planning, 72
Planning Application Kit (PAK), 410
Populate, 235
Popup component

animation, 251
autoclose, 251
modal, 251
name, 250
restrictions, 250

Preferences menu, 157
application design, 158
scripting, 158

Product Availability Matrix (PAM), 96
Promotion Management, 95
Prompt, 148
Properties, 205, 253

common layout, 214
custom CSS, 208
description, 206
theme, 206

Q

QR code, 168
Query, 375

R

Radio Button Group component, 291,
453
columns, 241
CSS class, 241
enabled, 241
items, 241
name, 241
on select, 241
properties, 241
visible, 241

Reports, 23

S

S_RS_ZEN, 131
authorization fields, 132

Sales dashboard application, 381
actual sales vs. sales targets, 382
BEx query, 403
BEx query exceptions, 404
building the application, 387
Chart component, 399
components, 391, 395
conditions, 403
CSS file, 387
cumulative contribution, 386
Dropdown Box component, 393, 398
Grid Layout component, 393
layout, 387
List Box component, 393, 397
market shares, 385
On select handler, 397
overview, 381, 383, 385
Pagebook component, 391
pie chart, 383, 384
PNL_MARKETSHARE, 399
sales development, 383
setting countries, 400
Text component, 391, 395
Top N query, 402

SAP BI, 25
SAP BusinessObjects Analysis, 37

creating a Design Studio application,
426

MS Office, 31, 35, 37, 425
OLAP, 35, 37, 425
smart copy, 425, 428

SAP BusinessObjects BI platform, 26, 94,
95, 263
add-on for Design Studio, 104
client sessions, 116
configuration for Design Studio, 111
logs, 115
Mobile category, 120
Mobile Server, 432
prerequisites, 96, 105
public folder, 209
supported versions, 96

Index

466

SAP BusinessObjects BI platform (Cont.)
user authorizations, 117

SAP BusinessObjects Dashboards, 24, 31,
34, 409, 431
chart types, 45
components, 45
container components, 47
data connectivity, 48
design environment, 44
example, 42
functionality, 41
maps, 47
publishing, 49
SDK, 50
selectors, 46
setup, 43
single-value components, 47
vs. Design Studio, 41, 58, 409

SAP BusinessObjects Design Studio, 408
and SAP BusinessObjects Mobile, 431
and the BI suite, 30
as an application-creation tool, 34
BEx WAD and Dashboards, 31
client tool, 94, 97, 132
components and properties, 205
configuration, 93
connectivity, 145
description, 24
design principles, 327
DuPont analysis application, 349
installation, 93
interactivity, 263
logon, 135
mobility, 431
roadmap, 407, 408, 412
sales dashboard application, 381
strategy and direction, 32
supported browsers, 97
updating, 99
usage scenarios, 63
visualization options, 327
vs. BEx Web Application Designer, 41,

58, 59
vs. SAP BusinessObjects Dashboards, 41,

58, 409

SAP BusinessObjects Design Studio client
tool, 95

SAP BusinessObjects Explorer, 31, 35,
36, 431

SAP BusinessObjects Mobile, 29, 30,
120, 431
annotation, 437
collaboration, 436
connectivity, 432
iOS, 432
support for Design Studio, 432
supported platforms, 432
voice memo, 437

SAP BusinessObjects Web Intelligence,
31, 33, 431

SAP Crystal Reports, 31, 32, 431
SAP HANA, 24, 25, 26, 59, 95, 125, 147,

162
analytic view, 145
calculation view, 145

SAP Jam, 437
SAP Java Connector (SAP JCo), 163
SAP JCo trace, 163
SAP Logon, 95, 162
SAP Lumira, 31, 35
SAP Lumira Cloud, 431
SAP NetWeaver BW, 24, 25, 26, 94, 263,

369
BEx Analyzer, 425
BEx query, 145, 148, 188
connecting to multiple systems, 128
InfoArea, 146, 147
InfoProvider, 145
OLAP connection, 122
query view, 145
role, 146, 147
setup for Design Studio, 127
supported versions, 96

SAP NetWeaver BW Java Portal, 58
SAP NetWeaver BW query, 370
SAP NetWeaver Portal, 95, 97, 130

prerequisites, 97
setup for Design Studio, 127

SAP Notes, 101, 127
SAP Predictive Analysis, 31, 35, 71
SAP Service Marketplace, 98, 99, 101

Index

467

SAP Transport Management System
(STMS), 95

SAP Visual Intelligence � SAP Lumira
Scaling factor, 174
Script Editor, 194, 196, 271
Scripting, 27, 163, 263, 271

adding a cascading filter, 305
adding a filter, 303
building a calculator, 316
changing data sources, 311
examples, 295, 303, 312, 316
finding errors, 280
menu navigation, 296
moving dimensions, 307
navigation between applications, 301
popup menu, 298
scorecards, 312
syntax, 264

Search menu, 153
application, 154, 155
find references, 155

Single sign-on (SSO), 125
Smart paste, 428
Software Development Kit (SDK), 26, 50,

59, 409
Startup mode, 158
Statements, 272
Support, 166
Syntax

call statements, 264
coloring, 164
error, 280

T

Tabstrip component
CSS class, 252
name, 252
on select, 252
properties, 252
selected tab index, 252
visible, 252

Templates, 28, 142
creating, 253
desktop, 143
iPad, 143

Templates (Cont.)
iPhone, 143
JSON, 278
scripting, 164
selection screen, 142
statements, 276

Testing, 201
Text component, 359

CSS class, 243
CSS style, 243
enabled, 243
name, 242
on click, 243
properties, 242
style, 243
visible, 243

Themes, 28, 254
roadmap, 254

Tomcat, 109
Toolbar, 167, 169

command descriptions, 169
send to mobile device, 168
seven command groups, 168

Tools menu, 157
TOP n condition, 403
Top n countries, 382
Totals calculation, 174
Trigger, 271

U

Unify, 412
Universes, 145

UNX, 49
URL parameters, 270, 301
Usage scenarios

customer relationship management, 63
employee management, 68
field sales, 73
financial reporting, 77
sales analytics, 81

User experience, 23

Index

468

V

Variables, 205, 267, 269
global, 270
local, 270
set method, 398
versus filters, 398

Versions, 93
View

additional properties, 179, 199
components, 170
error log, 180
outline, 171, 188
properties, 176, 177
script problems, 181

View menu, 155, 170
additional properties, 156
components, 156
error log, 157
outline, 156
properties, 156

View menu (Cont.)
reset layout, 157
script problems, 156
search results, 157

Visualization, 412
methods, 332
options, 327

W

WDeploy, 109
Web Application Container Services

(WACS), 109
Welcome page, 136, 165
What-if scenario, 43
Write back, 369
WYSIWYG, 26, 139, 169

X

Xcelsius, 31, 44

